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• Suppose you want a logistic 

regression model outputing a binary 
decision of {passing, failing} a class.

• Features available:


‣ HW 1 (weight = 20%)


‣ HW 2 (weight = 30%)


‣ Exam (weight = 40%)


‣ Attendence (weight = 10%)

• Pass if final grade > 60%.

0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence 

x4 =

0.693

w1 = 0.2 w4 = 0.1w2 = 0.3 w3 = 0.4

1

f(z) = {1, if z ≥ 0.6
0, otherwise

Weighted sum: 
4

∑
i=1

wixi

Nonlinear  
activation fuction
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This becomes an Artificial Neuron! 
a.k.a. Perceptron

• A perceptron is the simplest type of 
artificial neuron:

✴ It is a linear classifier that 
computes a weighted sums of its 
inputs;

✴ It then applies a (nonlinear) 
activation function — deciding 
whether it activates;

✴ And outputs a binary decision. x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Inputs

Weights
Bias

Weighted sum

Nonlinear 
transformation

Output value
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Some Notations

• Represent the input feature values and the weights as vectors,  and ;


‣ For the grading example, ; 

x w

w = [w1, w2, w3, w4] = [0.2, 0.3, 0.5, 0.1]

• Therefore, , where  represents dot product (element-wise 
product between two vectors of the same size).

∑n
i=1 wixi = w ⋅ x ⋅

• In practice, we incorporate the bias term into the vector representation, where 
bias  always gets weight = ;


‣ This gives us 

b 1.0

w = [w1, w2, w3, w4, wb] = [0.2, 0.3, 0.5, 0.1, 1.0]

y = σ(w ⋅ x + b) =
1

1 + exp( − (w ⋅ x + b))
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Notes on Nonlinear Activation Functions
Beyond sigmoid
• In standard logistic regression, we use Sigmoid ( ) as the activation function.


‣ We want the map any real value (from weighted sum) to  to be 
interpreted as probability.

σ

[0, 1]

• In the grading example, we use a step function: f(z) = {1, if z ≥ 0.6
0, otherwise

Intuition: nonlinearity enables the 
model to represent relations beyond 

linear functions (i.e., cannot be 
represented by matrix operations)!


* will come back to it later
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Other Nonlinear Activation Functions
Choose activation functions wisely given your problem setting

tanh ReLU 
(Rectified Linear Unit)

ReLu(z) = max(z,  0)tanh(z) =
ez − e−z

ez + e−z
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An Example Computation
Back to the grading example 

• Suppose we applied a curve and adds 
5 points (i.e., 0.05%) to the grade.

• Then, we have vector representations:


‣  = [0.2, 0.3, 0.4, 0.1, 1.0];


‣ = [0.37, 0.82, 0.76, 0.69, 0.05];

w

b
0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence 

x4 =

0.743

w1 = 0.2
w4 = 0.1w2 = 0.3 w3 = 0.4

1

f(z) = {1, if z ≥ 0.6
0, otherwise

0.05

wb = 1.0

• Then: 
y = f(w ⋅ x + b)

= f(0.2 × 0.37 + 0.3 × 0.82 + 0.4 × 0.76 + 0.1 × 0.69 + 1.0 × 0.05)
= f(0.743) = Boolean(0.743 ≥ 0.6) = 1

 
curving 
b =



Wait…. Where do weights come from?
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The Perceptron Learning Rule
You need to do error-driven learning in order to “perceive” and “adapt”

• Given an input-output pair  where  is a vector and :


‣  is the predicted label from the current set of weights;


‣  is the learning rate: how much to adjust each weight given a datapoint.

(x, y) x y ∈ {0,1}
̂y

η
• Intuition (very important!):


• If I made an error (  differs from , so that ), then update each 
weight  with the amount  towards the correct direction (sign of ).


• Each value of  determines, for this example, how much is  faulty / 
responsible for this mis-classification!

̂y y (y − ̂y) = ± 1
wi ηxi y − ̂y

xi wi

w := w + η(y − ̂y)x



A Real-Time Illustration
Perceptron is really “perceiving and adapting” — aka learning!

https://vinizinho.net/projects/perceptron-viz/
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• Logistic Regression is discriminative: unlike Naive Bayes, it 
doesn’t care how  is produced (i.e., not targeting to model the 
distribution of ). It focuses on learning the mapping from  to .

x
x x y

• Logistic regressoin is a specific version of Perceptron (an 
artificial neuron): where the nonlinear function is Sigmoid, and 
there is only one output node for binary classification.

• Perceptron is inspired by brain neurons and was initially 
invented to model “information detection, storage, and 
recognition” (Rosenblatt 1958);

• Perceptron iteratively learns a linear decision boundary for 
binary classification — we will come back to this intuition later~
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The XOR Problem and The First AI Winter 
1969 - 1980~ish



How Expressive is a Perceptron?
[Exercise] Let’s try representing logical gates!

• Can a Perceptron compute simple functions of input?


• Assume two inputs , use the following activation function:x1 and x2

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

AND OR

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0
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Sample Answer

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

AND OR

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

x1 x2 b = 1

1
1 −1

AND

z

f(z)

x1 x2 b = 1

1
1 0

OR

z

f(z)
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• XOR = exclusive OR: x1 OR x2, but not both 

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))



Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

• XOR = exclusive OR: x1 OR x2, but not both 

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

OR



Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

• XOR = exclusive OR: x1 OR x2, but not both 

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

XOROR



Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

• XOR = exclusive OR: x1 OR x2, but not both 

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

XOROR



Perceptrons are Linear Classifiers
Learning decision boundaries



Perceptrons are Linear Classifiers
Learning decision boundaries

• Given the current step-wise activation function, our perceptrons define an equation 
of a line in a 2D space (2D for 2 inputs):


‣ 


‣ In standard linear format: 

w1x1 + w2x2 + b = 0

x2 = (−w1/w2)x1 + (−b)/w2



Perceptrons are Linear Classifiers
Learning decision boundaries

• Given the current step-wise activation function, our perceptrons define an equation 
of a line in a 2D space (2D for 2 inputs):


‣ 


‣ In standard linear format: 

w1x1 + w2x2 + b = 0

x2 = (−w1/w2)x1 + (−b)/w2

• In the 2D space we are familiar with, this defines a decision boundary.


‣ Output = 0 if the input point is on one side of the line;


‣ Output = 1 if the input point is on the other side of the line.



Perceptrons are Linear Classifiers
Learning decision boundaries

• Given the current step-wise activation function, our perceptrons define an equation 
of a line in a 2D space (2D for 2 inputs):


‣ 


‣ In standard linear format: 

w1x1 + w2x2 + b = 0

x2 = (−w1/w2)x1 + (−b)/w2

• In the 2D space we are familiar with, this defines a decision boundary.


‣ Output = 0 if the input point is on one side of the line;


‣ Output = 1 if the input point is on the other side of the line.

• A good perceptron should be able to find a decision boundary that perfectly 
separates the 0 points from the 1 points — linearly separability!
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Perceptron’s Decision Boundaries
Visualizing the decision boundaries for XOR
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The AI Winter
10 years from prosperity to fall

• When Perceptron was introduced, it was 
quite exciting to have a machine that could 
learn from experience.


• This resulted in some vintage AI hype!


✴ Optimism ran wild: newspapers 
proclaimed that the perceptron would 
one day “walk, talk, see, and be 
conscious of its own existence.”


✴ Lots of research fundings.
NYT, via StefanoErmon on Twitter 
https://x.com/StefanoErmon/status/
936396977218056192?lang=en
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The AI Winter
10 years from prosperity to fall

• Minsky & Papert published a book named 
Perceptrons in 1969, a rigorous analysis showing that 
single-layer perceptrons could only learn linearly 
separable functions.


‣ Highlighting the XOR problem.

• This resulted in the first AI winter:


✴ Research funding agencies concluded that neural 
networks had hit a theoretical dead end.


✴ AI research shifted towards symbolic logic, expert 
systems, rule-based reasoning (n-gram models 
were born in this stage!)

Minsky & Papert 1969



Interium Summary 2

• The XOR Problem demonstrates a crucial limit of a single-neuron perceptron.


• Perceptron can only learn linearly separable patterns.


• This triggers the first AI winter after the initial AI hype for 10 years.
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One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

• Is it possible to do it compositionally?

• Let h1 = (x1 OR x2), h2 = (x1 AND x2)

• Then, (x1 XOR x2) == h1 AND (NOT h2)

• We do know how to express AND, and here is a simple tweak for NOT:

x1 AND (NOT x2)

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

x1 x2 b = 1

1
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z

f(z)

y Notation: 
collapse the 
nonlinear 
transformation 
into a single node
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• Here is one implementation:
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What if we use more than one layers?

• Component 1: the OR gate
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• Component 2: the AND gate
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One Solution to the XOR Problem
What if we use more than one layers?

• Component 3: the AND gate with NOT

x1 x2 b = 1

1 −1
0

x1  XOR x2

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

💡

x1 x2 b = 1
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x1 AND (NOT x2)
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One Solution to the XOR Problem
Let’s verify!

x1 x2 h10 h20 h1 h2 y0 y

0 0 0 -1 0 0 0 0

0 1 1 0 1 0 1 1

1 0 1 0 1 0 1 1

1 1 2 1 1 1 -1 0
x1 x2 b = 1

1 −1
0

x1  XOR x2

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

ANDOR XOR
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Key Idea = using nonlinear transformation at intermediate stages
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transformated result directly becomes 
the output;
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• For a two-layer neural network: it can use the nonlinear transformation of the 
first layer to extract whatever useful features (in our case: AND and OR);

• And it can use the extracted hidden features to do more computation (further 
nonlinear transformation) — it could be that those intermediate features are 
transformed to a linearly separable space!



More on Nonlinearity
Nonlinear transformation are extremely powerful
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Learning a good quadratic function
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Return the model h(x) = sign(w̃T�(x))
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More on Nonlinearity
Nonlinear transformation are extremely powerful

https://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture6.pdf

Learning a good quadratic function

Transform original data {xn, yn} to {zn = �(xn), yn}
Solve a linear problem on {zn, yn} using your favorite algorithm A to
get a good model w̃
Return the model h(x) = sign(w̃T�(x))

e.g. Tranforming to the 
Polar coordinate to 
make an originally non-
linearly-separable 
dataset separable!
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Generalizing the Architecture
From Logistic Regression to Multinomial Logistic Regression

• Let’s consider a simple generalization: 
imagine we are doing a classification task 
with multiple classes / labels. How to 
represent multiple outcomes?

• Two tweaks:


‣ Have multiuple output nodes (one per 
class);


‣ Switch the activation function to 
softmax;

• This is also known as multinomial logistic 
regression.



Generalizing the Architecture
Multinomial Logistic Regression

• Suppose we have  input features and  classes;


• One way to represent it is a 1-layer neural network with multiple output nodes 
(i.e., a layer of neurons)


• We don’t count the input layer as a layer, so this network has 1 layer.

n m

 is a matrixW

 is a vectorb
Input a list 
of scalars

 is a vector: y = [y1, ⋯, ym]
y = softmax(Wx + b)
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Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

• Now, we have multiple neurons in the layer, and each neuron is connected to 
all the inputs, so we (naturally) need a matrix to represent the weights.

• Suppose we have 2 input features and 3 neurons:

0.1 1.0
2.0 −0.1

−0.3 0.5
[ 1.4
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1.4 × (−0.3) + (−0.2) × 0.5

=
−0.06
2.82

−0.52

W x Wx

In general: position  in  is the weight connecting input  to neuron .[i, j] W j i

Weight connecting 
1st input to 1st neuron

Weight connecting 2nd 
input to 3rd neuron
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Handling the Bias Term

• As before, we incorporeate the bias vector  into  and  by adding a 
constant value  into the input vector, as follows:
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Generalizing the Notations, cont.
Folding the nonlinear transformation into the neurons

• A neuron in a neural network computes the linearly transformed weighted 
sum: , where  can be softmax, sigmoid, ReLU, tanh, etc.f(Wx + b) f

• A layer is a list of neurons, defined by , , and the nonlinear transformation.W b

• Input nodes ( ) don’t count as a layer; and output values also don’t.x

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Layer 1

Input values

Output values
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x1 x2 b = 1

1 −1
0

h1
f(z)

h

h2

11 1

b = 1f(z)

f(z)
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Output values

Layer 1

Input values
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Multi-layer Neural Networks

𝑊1 𝑏1

Hidden state  (vector)h1

Input layer  (vector)x

Hidden state  (vector)h2

Output  (vector)y

𝑏2

𝑏3

𝑊2

𝑊3
y = softmax(W3h2 + b3)

h2 = ReLU(W2h1 + b2)

h1 = ReLU(W1x + b1)

y1 y3y2
This is a 3-layer 
neural network
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Terminology for this type of Neural Networks
Different names for the same architecture

• Feedforward Neural Network (FFNN) 

✴ Because layers are feeding foward to each other — 
the output of layer  becomes the input of layer ;l l + 1

• Fully-connected Neural Network (FCNN) 

✴ From layer  to layer , all nodes are connected to 
all other nodes;

l l + 1

• Multi-layer Perceptron (MLP) 

✴ This generalizes a single-neuron Perceptron into a 
multi-neuron, multi-layer network



Terminology for this type of Neural Networks
More generally, at the field level



Terminology for this type of Neural Networks
More generally, at the field level

• Connectionist Models 

✴ Named after the school of thought “connectionism” (vs. “symbolism);



Terminology for this type of Neural Networks
More generally, at the field level

• Connectionist Models 

✴ Named after the school of thought “connectionism” (vs. “symbolism);

• Parallel Distributed Processing (PDP) 

✴ Each input is multiplied by a weight, and such computations are 
independent from each other, thus can be done in parallel / simultaneously.



Terminology for this type of Neural Networks
More generally, at the field level

• Connectionist Models 

✴ Named after the school of thought “connectionism” (vs. “symbolism);

• Parallel Distributed Processing (PDP) 

✴ Each input is multiplied by a weight, and such computations are 
independent from each other, thus can be done in parallel / simultaneously.

• Deep Learning 

✴ Recent branding for neural networks with many layers;
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Expressivity of Neural Networks
A significant upgrade

• 1-layer Perceptrons are very limited;

• But having one more layer makes it 
much more powerful!

• In fact, a 2-layer perceptron can 
approximate any function to an 
arbitrary degree of precision! 

‣ This is an “in principle” claim;


‣ Assumes arbitrarily large layers (i.e., 
infinite neurons);
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Interium Summary 3
From individual neurons to networks

• Multi-layer perceptron / Neural networks can handle XOR.

• Multinomial logistic regressoin is a specific version of 
neural networks;

• We use matrix and vector notations to represent neural 
networks of arbitrary depths;

• Neural networks that have more than 1 layers is 
ARBITRARILY EXPRESSIVE in principle: they can 
approximate any function given arbitrarily many neurons;



Back Propagation & Gradient Descent 
1974 (first proposed) & 1986 (polularized)
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Revisit the Perceptron Learning Rule
Error-based Learning as the secret sauce

• Remember the perceptron learning rule: w := w + η(y − ̂y)x

‣ Roughly: update each weight proportional to the error (i.e., the loss between 
predicted  and true label ).̂y y

• How to do it for a neural network? — How to compute the error across multiple 
layers? 

‣ Assume we have some loss function that compute the difference between two 
vectors: L( ̂y − y)

‣ Goal = to derive gradient descent with the help of backpropagation!

Update each weight: , where w′￼ = w − η
d

dw
L( f(x; w), y) L( f(x; w), y) = L( ̂y − y)
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Computation Graphs
Representing the procedure of the computation

• For training, we need the derivative of the loss with respect to each weight 
in every layer of the network;


• But the loss is computed only at the very end of the network….


• How do we know how much a weight at Layer  contribute the final loss?1

• Solution = represent the computation of the entire neural network with a (very 
big) computation graph!


• A computation graph represents the entire process of computing a function 
(which can be a very complex composition of multiple functions) — 
representing the dependencies between any two steps of the computation.
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[Exercise] Try to construct a computation graph for a simple equation 

• Say, here is a dummy loss function with 3 inputs: 

• In a computation graph: a node represents a value, and an edge represents a 

function / arithmetic operation / computation.


• Try to construct a computation graph for !
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Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation 

• . Now let L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2

a

c

b d = 2b

e = a + d

L = ce

Forward Pass

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10
Remember: 
We want to know 
how much does 

 each 
contribute to the 
final loss 

a, b, c

L
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• We use ’s contribute to compute ’s contribution.

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

e d

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

e = a + d

⇒
∂e
∂d

= 1∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

f(x) = u(v(w(x)))
∂f
∂x

=
∂u
∂v

⋅
∂v
∂w

⋅
∂w
∂x

The Chain Rule



Backpropagation
Responsibility attribution through gradient
• . Now let ;


• We don’t know immediately how much  contribute to …


• We use ’s contribute to compute ’s contribution.

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

e d

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

e = a + d

⇒
∂e
∂d

= 1

⇒
∂L
∂d

=
∂L
∂e

∂e
∂d

= 1 × −2
= − 2

∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

∂L
∂d

= − 2

f(x) = u(v(w(x)))
∂f
∂x

=
∂u
∂v

⋅
∂v
∂w

⋅
∂w
∂x

The Chain Rule



Backpropagation
Responsibility attribution through gradient
• . Now let ;


• We don’t know immediately how much  contribute to …


• We continue to compute the contribution of  and , respectively.
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• . Now let ;

• Derivative on an edge: local dependency;

• Derivative on node: long dependency all the way from the final node ( )
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Backpropagation
Responsibility attribution through gradient
• . Now let ;

• Derivative on an edge: local dependency;
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Backpropagation
Responsibility attribution through gradient
• . Now let ;

• Derivative on an edge: local dependency;

• Derivative on node: long dependency all the way from the final node ( )

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
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Backpropagation → Gradient Descent
Learning/Updating the weights to minimize loss 

Update each weight: , where w′￼ = w − η
d

dw
L( f(x; w), y) L( f(x; w), y) = L( ̂y − y)

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

∂L
∂d

= − 2

∂e
∂a

= 1∂L
∂a

= − 2

∂d
∂b

= 2∂L
∂b

= − 4

Backward Pass: Error Propagation



Gradient Descent in Neural Networks
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The computation quickly blows up
Verify this when you are free!

For a simple two-layer  
neural network:

One round of gradient descent:



Notes on Loss Functions
Bonus on math
• If you wonder why perceptron learning uses  while neural network uses  to 

update their weights….!

Perceptron: ; Neural Network: 


• Short answer: they are actually the same thing! Here is a derivation:


✴ For loss function  or :


✴ The gradient with respect to weight  turns out to be: 


✴ If we plug this into the gradient descent formula:





✴ The two minus signs cancels, giving the same direction as perception update.

+ −

w = w + η(y − ̂y)x w′￼ = w − η
d

dw
L( f(x; w), y)

L =
1
2

(y − ̂y)2 L = − [ y log( ̂y) + (1 − y)log(1 − ̂y) ]
wi

∂L
∂wi

= − (y − ̂y) xi

w := w − η
∂L
∂w

= w − η ( − (y − ̂y) x) = w + η(y − ̂y) x
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Gradient Descent: Intuitions in 1D Space
Learning to minimize loss (as an optimization problem)

Parameter Value

Loss

Random 
starting point

1

2
3

4 5 6

We continue making 
such jumps until we 
reach a minimum, 
where going in any 

direction would 
increase the loss

🌟



Gradient Descent: Intuitions in High Dimensions 
Learning to minimize loss (as an optimization problem)
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Interium Summary 4
Backpropagation and Gradient Descent

• Backpropagation (a method for efficiently computing the gradients) tells us 
*what the gradients are* for each weight.


• Computing dependencies across layers through chain rule in computation 
graphs;

• Gradient descent (an optimization algorithm) tells us *how to update* the 
weight.


• Iteratively optimizing to minimize the loss for each training example.


• A forward pass (generating prediction) followed by a backward pass 
(computing the gradient and updating the weights).



Development of Neural Network 
Architectures 
1990s - present
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Recurrent Neural Network (RNN)
Introducing the notion of Time

• Motivation: Standard feed-forward networks couldn’t handle sequential or time-
dependent data, since they treat all inputs as independent.

• Usefulness: RNNs introduce recurrent connections that let information persist 
across time steps, enabling modeling of language, speech, and temporal patterns.
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Long Short-Term Memory (LSTM)
Handling long-distance dependencies through managing memory

• Motivation: Vanilla RNNs struggled with 
long-term dependencies because of 
vanishing/exploding gradients during 
training.

• Usefulness: LSTMs use gated cells to 
selectively remember or forget information, 
allowing stable learning over long 
sequences—powering early 
breakthroughs in speech recognition, 
translation, and text generation.



Transformers
Global information access



Transformers
Global information access

• Motivation: Even LSTMs process 
sequences step-by-step, limiting 
parallelization and global context 
access.



Transformers
Global information access

• Motivation: Even LSTMs process 
sequences step-by-step, limiting 
parallelization and global context 
access.

• Usefulness: Transformers replace 
recurrence with self-attention, 
letting the model directly relate 
every token to every other—
making large-scale training efficient 
and forming the foundation of 
modern large language models.



Next Time (after fall break):  
Tom McCoy presenting on LLMs



Thank you for listening!



And their slides are adpated from Jurafsky and Martin: https://web.stanford.edu/~jurafsky/slp3/

Slides are partially adapted from  
Bob Frank (left) and Tom McCoy (right)

https://web.stanford.edu/~jurafsky/slp3/

