Neural Networks

Zhenghao Herbert Zhou, Oct 9th, 2025

Recap from Classification

Logistic Regression (from lecture on Sep 18th)

Recap from Classification

Logistic Regression (from lecture on Sep 18th)

* Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

Recap from Classification

Logistic Regression (from lecture on Sep 18th)

* Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

~ Given a set of input features x;, learn a set of weight w, and a bias term b;

Recap from Classification .
Logistic Regression (from lecture on Sep 18th) /

* Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

~ Given a set of input features x;, learn a set of weight w, and a bias term b;

> Transform the weighted sum z into range [0, 1] through Sigmoid function;

Recap from Classification

Logistic Regression (from lecture on Sep 18th)

* Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

~ Given a set of input features x;, learn a set of weight w, and a bias term b;

> Transform the weighted sum z into range [0, 1] through Sigmoid function;

~ Classification: use o(z) = 0.5 as the decision boundary.

Recap from Classification

Logistic Regression (from lecture on Sep 18th)

* Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

~ Given a set of input features x;, learn a set of weight w, and a bias term b;

> Transform the weighted sum z into range [0, 1] through Sigmoid function;

~ Classification: use o(z) = 0.5 as the decision boundary.

Recap from Classification

Logistic Regression (from lecture on Sep 18th)

* Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

~ Given a set of input features x;, learn a set of weight w, and a bias term b;

> Transform the weighted sum z into range [0, 1] through Sigmoid function;

~ Classification: use o(z) = 0.5 as the decision boundary.

Another Way of Representing Logistic Regression
An example on decising whether you pass a class

Another Way of Representing Logistic Regression
An example on decising whether you pass a class

* Suppose you want a logistic
regression model outputing a binary
decision of {passing, failing} a class.

Another Way of Representing Logistic Regression
An example on decising whether you pass a class

* Suppose you want a logistic
regression model outputing a binary
decision of {passing, failing} a class.

* Features available:
> HW 1 (weight = 20%)
> HW 2 (weight = 30%)
> Exam (weight = 40%)
> Attendence (weight = 10%)

Another Way of Representing Logistic Regression
An example on decising whether you pass a class

* Suppose you want a logistic
regression model outputing a binary
decision of {passing, failing} a class.

* Features available:
> HW 1 (weight = 20%)
> HW 2 (weight = 30%)
> Exam (weight = 40%)
> Attendence (weight = 10%)

* Pass if final grade > 60%.

Another Way of Representing Logistic Regression
An example on decising whether you pass a class

* Suppose you want a logistic
regression model outputing a binary
decision of {passing, failing} a class.

e Features available:
> HW 1 (weight = 20%)
> HW 2 (weight = 30%)

> Attendence (weight = 10%)

Al = HW1 Xy = HW?2 X3 = exam Xy =
° PaSS If flnal grade > 60% SCore SCore SCcore attendence

Another Way of Representing Logistic Regression
An example on decising whether you pass a class

* Suppose you want a logistic
regression model outputing a binary
decision of {passing, failing} a class.

e Features available:
> HW 1 (weight = 20%)

> HW 2 (weight = 30%) 0.1
wy =03 N\wy =04~y =

P N C B ONO

> Attendence (weight = 10%)

Al = HW1 Xy = HW?2 X3 = exam Xy =
° PaSS If flnal grade > 60% SCore SCore SCcore attendence

Another Way of Representing Logistic Regression
An example on decising whether you pass a class

* Suppose you want a logistic
regression model outputing a binary
decision of {passing, failing} a class.

e Features available:

4
> HW 1 (Welght _ 20%) Welghted SUum. Z W;X;

=1

—_—~

> HW 2 (weight = 30%) 0.1
wy =03 N\wy =04~y =

P N C B ONO

> Attendence (weight = 10%)

Al = HW1 Xy = HW?2 X3 = exam Xy =
° PaSS |f flnal grade > 60% SCore SCore SCcore attendence

Another Way of Representing Logistic Regression
An example on decising whether you pass a class

* Suppose you want a logistic

regression model outputing a binary Nonlinear
decision of {passing, failing} a class. activation fuction

I, ifz>0.6
* Features avallable:) fla) = {o otierwse
> HW 1 (weight = 20%) Weighted sum: Zwixi @

i=1 _

> HW 2 (weight = 30%) 0.1
wy =03 N\wy =04~y =

PO O MO NO

> Attendence (weight = 10%)

Al = HW1 Xy = HW?2 X3 = exam Xy =
° PaSS |f flnal grade > 60% SCore SCore SCcore attendence

This becomes an Artificial Neuron!

a.k.a. Perceptron

This becomes an Artificial Neuron!

a.k.a. Perceptron

A perceptron is the simplest type of
artificial neuron:

This becomes an Artificial Neuron!

a.k.a. Perceptron

A perceptron is the simplest type of 4
artificial neuron:

* |t is a linear classifier that
computes a weighted sums of its
INputs;

Weighted sum

Bias
Weights w;,

Inputs X1 X5 X3

This becomes an Artificial Neuron!

a.k.a. Perceptron

A perceptron is the simplest type of
artificial neuron:

* It is a linear classifier that

computes a weighted sums of its
INputs;

* |t then applies a (nonlinear)
activation function — deciding
whether It activates;

Nonlinear
transformation

Weighted sum

Bias
Weights w;

Inputs X1 X5 X3

This becomes an Artificial Neuron!

a.k.a. Perceptron

Output value y
A perceptron is the simplest type of 4

artificial neuron:

Nonlinear
transformation

* |t is a linear classifier that
computes a weighted sums of its
INputs;

Weighted sum

* |t then applies a (nonlinear)
activation function — deciding _
whether it activates: Weights w,

Bias

. . X X X
* And outputs a binary decision. Inputs 1 2 3

The Perceptron / Artificial Neuron
1958 - 1968

From Brain Neurons to the Perceptron

Inspiration: multiple inputs, weighted connections, one firing output.

(Left) By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830;

(Bottom right) Mark | Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-
with-his-Mark-1-perceptronleft-and-a-graphical-representation-of_fig2_345813508

From Brain Neurons to the Perceptron

Inspiration: multiple inputs, weighted connections, one firing output.

Cell body

Axon Telodendria / :

e R

J VSRR
‘ p ;/ i " '4; e
3 s
ri E
7 Wy X : ¢
I == - -3 N B
- . _g G #_:}Tt/' — B
N Qb(, sl 2

_;

Synaptic terminals

Nucleus \

.

Endoplasmic /
reticulum 5

—_—

—

Mitochondrion \ \ Dendrite

\
/ % Dendritic branches

(Left) By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830;

(Bottom right) Mark | Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-
with-his-Mark-1-perceptronleft-and-a-graphical-representation-of_fig2_345813508

From Brain Neurons to the Perceptron

Inspiration: multiple inputs, weighted connections, one firing output.

Cell body

Axon Telodendria %, =
Nucleus \ ~— / /

Synaptic terminals

!\ \ \ y v "’ ,‘ t’
= N / A ; , .
Blus P Axon hillock)
2. : ‘// \:'. .&\,/
Vs CIE ‘B ;"‘ i,
3 /'\\ e Sl

e,
— S — ~

/\, " Golgi apparatus
Endoplasmic _____
X S

reticulum \< |
Mitochondrion \\ \™Dendrite

/ \
/ \\lDendritic branches

—

—

(Left) By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830;

(Bottom right) Mark | Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-
with-his-Mark-1-perceptronleft-and-a-graphical-representation-of_fig2_345813508

Psychological Review
Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN'!

F. ROSENBLATT

Cornell Aeronautical Laboratory

Frank Rosenblatt 1958

From Brain Neurons to the Perceptron

Inspiration: multiple inputs, weighted connections, one firing output.

Psychological Review
Vol. 65, No. 6, 1958

Axon Telodendria) et THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION

,'l A(‘ “ X ;f
IN THE BRAIN?!

. X iig ;Jf“ N :

A A W

Cell body

\

Nucleus \

/

~—— / F. ROSENBLATT
Cornell Aeronautical Laboratory

. 4 \5”- Axon hl”OCk\ SynaptIC terminals
D e A Frank Rosenblatt 1958

- ,
S/ N, Golgi apparatus
En_doplasmic - Sesoty us::::;m nsus.r:):ssc
reticulum < \ (S-UNITS) o (A-UNITS) (R-UNITS)
A |
_ . _ /cuu reolTs) —1+1"
Mitochondrion * \ Dendrite /s '
I\ '::H —{rs .
y ,5}?7/’ = o 0
/ \\lDendritic branches Ao ‘
\ .‘)‘:J‘rf.‘"‘ o 0
:'::m:f o ' Re
.',oo”_’ 0
] |
0
|

NETWORK OF
IOt *MANY-TO-ONE" CONNECTIONS,
s e FEED-BACK LOOPS MOT SHOWN

Figure | ORGANIZATION OF THE MARK | PERCEPTRON

(Left) By BruceBlaus - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=28761830;

(Bottom right) Mark | Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-
with-his-Mark-1-perceptronleft-and-a-graphical-representation-of_fig2_345813508

Some Notations

1

Y= oW X) = W x4 b))

Some Notations

|
Il +exp(— (W-X+ D))

y=0(W-X+b) =

 Represent the input feature values and the weights as vectors, X and w;

~ For the grading example, w = [w, w,, ws, w,] = [0.2, 0.3, 0.5, 0.1];

Some Notations

|
Il +exp(— (W-X+ D))

y=0(W-X+b) =

 Represent the input feature values and the weights as vectors, X and w;
~ For the grading example, w = [w, w,, wa, w,| = [0.2, 0.3, 0.5, 0.1];

 Therefore, Z?zl w.X; = W - X, where - represents dot product (element-wise
product between two vectors of the same size).

Some Notations

1

Y= oW X) = W x4 b))

 Represent the input feature values and the weights as vectors, X and w;
~ For the grading example, w = [w, w,, wa, w,| = [0.2, 0.3, 0.5, 0.1];

 Therefore, Z?zl w.X; = W - X, where - represents dot product (element-wise
product between two vectors of the same size).

* |n practice, we incorporate the bias term into the vector representation, where
bias b always gets weight = 1.0;

> This gives us W = [wy, w,, wy, Wy, w, | = [0.2, 0.3, 0.5, 0.1, 1.0]

Notes on Nonlinear Activation Functions

Beyond sigmoid

Notes on Nonlinear Activation Functions

Beyond sigmoid

* |In standard logistic regression, we use Sigmoid (o) as the activation function.

> \We want the map any real value (from weighted sum) to [0, 1] to be
iInterpreted as probability.

Notes on Nonlinear Activation Functions

Beyond sigmoid

* |In standard logistic regression, we use Sigmoid (o) as the activation function.

> \We want the map any real value (from weighted sum) to [0, 1] to be
iInterpreted as probability.

|1, 1fz>0.6
* In the grading example, we use a step function: J(z) = 0, otherwise

1.0

0.8}
0.6}
Y

0.4}

0.2}

0.0

Notes on Nonlinear Activation Functions

Beyond sigmoid

* |In standard logistic regression, we use Sigmoid (o) as the activation function.

> \We want the map any real value (from weighted sum) to [0, 1] to be
iInterpreted as probability.

|1, 1fz>0.6
* In the grading example, we use a step function: J(z) = 0, otherwise

1.0

Intuition: nonlinearity enables the
model to represent relations beyond
linear functions (i.e., cannot be Y
represented by matrix operations)!

0.8}

*will come back to it later 00

Other Nonlinear Activation Functions

Choose activation functions wisely given your problem setting

eZ _ e—Z

tanh(z) =
e+ e+

1.0 1 r
0.5}

y = tanh(z)

—0.5!

1.0 J

=10 -5 0 5 10

tanh

Other Nonlinear Activation Functions

Choose activation functions wisely given your problem setting

eZ _ e—Z

tanh(z) = e . RelLu(z) = max(z, 0)

1.0 . r
0.5}

y = tanh(z)

—0.5

-1.0 -/// . . ~10

=10 -5 0 5 10 =10 —5 0 5

tanh RelLU
(Rectified Linear Unit)

An Example Computation

Back to the grading example

W3 ()4 PN Ol

W1=02
W2:O

x; =HW1 Xx, = HW2 Xx; = exam Xq =
score score score attendence

An Example Computation

Back to the grading example

e Suppose we applied a curve and adds
5 points (i.e., 0.05%) to the grade.

W1_02
wy 2 0.4

)

x; =HW1 Xx, = HW2 Xx; = exam Xq =
score score score attendence

An Example Computation

Back to the grading example

e Suppose we applied a curve and adds
5 points (i.e., 0.05%) to the grade.

W1_02
wy 2 0.4

)

Xy =HW1 X, = HW2 Xx; = exam Xy =
score score score attendence curvmg

An Example Computation

Back to the grading example

e Suppose we applied a curve and adds
5 points (i.e., 0.05%) to the grade.

 Then, we have vector representations:
w; = 0.2

- w =[0.2,0.3,0.4, 0.1, 1.0]; MmN ™
» b=1[0.37, 0.82, 0.76, 0.69, 0.05]; @ @ @ @ @
Xy =HW1 X, = HW2 Xx; = exam Xy =
score score score attendence curvmg

An Example Computation

Back to the grading example 0
e Suppose we applied a curve and adds f(z) = { (1)’ :tie‘rw(?i
5 points (i.e., 0.05%) to the grade. @ |

 Then, we have vector representations:
w; = 0.2
wy 2 0.4

» w =[0.2, 0.3, 0.4, 0.1, 1.0]; ”
» b=1[0.37, 0.82, 0.76, 0.69, 0.05]; @ @ @ @ @
Xy =HW1 X, = HW2 Xx; = exam Xy =
e Then: score score score attendence Curvmg

y=f(wW-X+ D)
= f(0.2x0.37+0.3%x0.824+04X%x0.76 + 0.1 X 0.69 + 1.0 x 0.05)

= 1(0.743) = Boolean(0.743 > 0.6) = 1

Wait.... Where do weights come from?

The Perceptron Learning Rule

You need to do error-driven learning in order to “perceive” and “adapt”

w:=w4+nly—yXx

The Perceptron Learning Rule

You need to do error-driven learning in order to “perceive” and “adapt”

W =w+7n(y—yX
» Given an input-output pair (X, y) where X is a vector and y € {0,1}:
>V is the predicted label from the current set of weights;

> 11 Is the learning rate: how much to adjust each weight given a datapoint.

The Perceptron Learning Rule

You need to do error-driven learning in order to “perceive” and “adapt”

W =w+7n(y—yX
» Given an input-output pair (X, y) where X is a vector and y € {0,1}:
>V is the predicted label from the current set of weights;

> 11 Is the learning rate: how much to adjust each weight given a datapoint.
e Intuition (very important!):

» If | made an error (y differs from y, so that (y — y) = £ 1), then update each
weight w; with the amount 7x; towards the correct direction (sign of y — V).

 Each value of x; determines, for this example, how much is w; faulty /
responsible for this mis-classification!

A Real-Time lllustration

Perceptron is really “perceiving and adapting” — aka learning!

Perceptron visualization

Iterations: 90

Misclassifications: 0 / 100

¢ Star 22
L.0 A
o Y ¢ ® °
Perceptrons are supervised learning models used to classify data | g o © o ° o
into binary classes. They are one of the simplest models around, and } °] °
thus serve as a good introduction to machine learning. \

This page contains a running visualization of the Perceptron Learning
Algorithm (PLA). First, a target function is generated randomly, and
then, a set of observations is uniformly generated to populate the
dataset. The learning algorithm is executed according to the lines
below.

Number of points: (100 |
¥ Generate linearly separable data

[Pause || H Step > H Reset]

Perceptron Learning Algorithm

0. Initialize w < O y.

1. While there are micclassinied points:

1.1. Pick a misclassified point x,,

1.2. Update weights: w <— W + ynXp,

https://vinizinho.net/projects/perceptron-viz/

Interium Summary 1
Logistic Regression — Artifical Neuron / Perceptron — Learning

Interium Summary 1
Logistic Regression — Artifical Neuron / Perceptron — Learning

* Logistic Regression is discriminative: unlike Naive Bayes, it
doesn’t care how X is produced (i.e., not targeting to model the
distribution of Xx). It focuses on learning the mapping from X to y.

Interium Summary 1

Logistic Regression — Artifical Neuron / Perceptron — Learning

* Logistic Regression is discriminative: unlike Naive Bayes, it
doesn’t care how X is produced (i.e., not targeting to model the
distribution of Xx). It focuses on learning the mapping from X to y.

* Logistic regressoin is a specific version of Perceptron (an
artificial neuron): where the nonlinear function is Sigmoid, and
there is only one output node for binary classification.

Interium Summary 1

Logistic Regression — Artifical Neuron / Perceptron — Learning

* Logistic Regression is discriminative: unlike Naive Bayes, it
doesn’t care how X is produced (i.e., not targeting to model the
distribution of Xx). It focuses on learning the mapping from X to y.

* Logistic regressoin is a specific version of Perceptron (an
artificial neuron): where the nonlinear function is Sigmoid, and
there is only one output node for binary classification.

 Perceptron is inspired by brain neurons and was Initially
invented to model “information detection, storage, and
recognition” (Rosenblatt 1958);

Interium Summary 1

Logistic Regression — Artifical Neuron / Perceptron — Learning

* Logistic Regression is discriminative: unlike Naive Bayes, it
doesn’t care how X is produced (i.e., not targeting to model the
distribution of Xx). It focuses on learning the mapping from X to y.

* Logistic regressoin is a specific version of Perceptron (an
artificial neuron): where the nonlinear function is Sigmoid, and
there is only one output node for binary classification.

 Perceptron is inspired by brain neurons and was Initially
invented to model “information detection, storage, and
recognition” (Rosenblatt 1958);

Iterations: 90
Misclassifications: 0 / 100

* Perceptron iteratively learns a linear decision boundary for
binary classification — we will come back to this intuition later~

The XOR Problem and The First Al Winter
1969 - 1980~iIsh

How EXxpressive is a Perceptron?

[Exercise] Let’s try representing logical gates!

0, fw-x+b<0
I, fw-x+b>0
« Assume two inputs x; and X,, use the following activation function:

 Can a Perceptron compute simple functions of input? y = {

AND OR
xl X3 \'4 xl X3 \'4
O O O O O
O 1 O O 1
1 O O 1 O
1 1 1 1 1

How EXxpressive is a Perceptron?

Sample Answer

AND
xl X \ 4
O O O
O 1 O
1 O O
1 1 1

0, ifw-x+
1,

b <0

T W - X -

-b > 0

How EXxpressive is a Perceptron?

Sample Answer

f(2)

xl X \ 4
O O O
O 1 O
1 O O
1 1 1

0, ifw-x+
1,

b <0

T W - X -

-b > 0

[0, fw-x+b<0
How Expressive is a Perceptron? = {1» W x+b>0

Sample Answer

f(2)
1 _
i 1
o oy
x1 X y x1 x2
0, 0, 0, 0 0
0, 1 0, 0 1
1 0, 0, 1 0
1 1 1 1 1

Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

e XOR = exclusive OR: x1 OR x2, but not both

 Formally: (x1 OR x2) AND (NOT (x1 AND x2))

Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

e XOR = exclusive OR: x1 OR x2, but not both

 Formally: (x1 OR x2) AND (NOT (x1 AND x2))

OR
xl X y
O O O
O 1 1
1 O 1
1 1 1

Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

e XOR = exclusive OR: x1 OR x2, but not both

 Formally: (x1 OR x2) AND (NOT (x1 AND x2))

OR XOR
xl X3 y xl X3 \'4
O O O O O O
0 1 1 0 1 1
1 O 1 1 O 1
1 1 1 1 1 O

Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

e XOR = exclusive OR: x1 OR x2, but not both

 Formally: (x1 OR x2) AND (NOT (x1 AND x2))

OR XOR
xl X3 y xl X3 \'4
O O O O O O
0 1 1 0 1 1
1 O 1 1 O 1
1 1 1 1 1 O

Perceptrons are Linear Classifiers

Learning decision boundaries

Perceptrons are Linear Classifiers

Learning decision boundaries

* Given the current step-wise activation function, our perceptrons define an equation
of a line in a 2D space (2D for 2 inputs):

> W1x1+W2x2+b=()

> In standard linear format: x, = (—w/w,)x, + (=b)/w,

Perceptrons are Linear Classifiers

Learning decision boundaries

* Given the current step-wise activation function, our perceptrons define an equation
of a line in a 2D space (2D for 2 inputs):

> W1x1+W2x2+b=()
> In standard linear format: x, = (—w/w,)x, + (=b)/w,
* |n the 2D space we are familiar with, this defines a decision boundary.

> Qutput = 0 if the input point is on one side of the line;

> QOutput = 1 if the input point is on the other side of the line.

Perceptrons are Linear Classifiers

Learning decision boundaries

* Given the current step-wise activation function, our perceptrons define an equation
of a line in a 2D space (2D for 2 inputs):

> WX +wWox, +b =0
> In standard linear format: x, = (—w/w,)x, + (=b)/w,

* |n the 2D space we are familiar with, this defines a decision boundary.
> Qutput = 0 if the input point is on one side of the line;

> QOutput = 1 if the input point is on the other side of the line.

e A good perceptron should be able to find a decision boundary that perfectly
separates the 0 points from the 1 points — linearly separability!

Perceptron’s Decision Boundaries

Visualizing the decision boundaries for AND and OR

<2
N
N
N
L O O O
\\
\\ \
N N
N N\
N N
N N
\\ .
\\\ \\
N\ N
| . N]
0 1 0 ~

a) Xl AND X2 b) Xl OR X2

Perceptron’s Decision Boundaries

Visualizing the decision boundaries for AND and OR

<2
I O .. O O
) % Y RS "
0 1 0 <1
a) Xl AND X2 b) Xl OR X2

AND and OR are linearly separable!

Perceptron’s Decision Boundaries

Visualizing the decision boundaries for XOR

R
N
~

1

N
N
N

O
\\\ ‘_’Xl
\\\1
b) Xl ORXz

O
?
0 O o—
0 1
C) Xl XOR X2

Perceptron’s Decision Boundaries

Visualizing the decision boundaries for XOR

R
N
~

1

)
i 1 1 O ®
\\\\\\ \\\\\)
O O—»Xl 0 & *— 0 O *—
0 1 0 ~ 0 1
a) x; AND x, b) x;1 ORx, c) x1 XOR x,

XOR is NOT linearly separable!

The Al Winter

10 years from prosperity to fall

 \When Perceptron was introduced, it was
quite exciting to have a machine that could
learn from experience.

* This resulted in some vintage Al hype!

* Optimism ran wild: newspapers
proclaimed that the perceptron would
one day “walk, talk, see, and be
conscious of its own existence.”

* Lots of research fundings.

NEW NAVY DEVICR
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be con-
scious of its existence,

NYT, via StefanoErmon on Twitter
https://x.com/StefanoErmon/status/
9363969772180561927lang=en

The Al Winter

10 years from prosperity to fall

. . T — ¥
2 oy
. R f o,
- - e
. -
~) - -
\ -‘- — — - >
.

- ™
. e -
. N ——
LW -
. - -
N o
‘e T ——
- — ——
- N
- _\\ a
™

-
-
— W ——

e
S ————

== Perceptrons

Minsky & Papert 1969

The Al Winter

10 years from prosperity to fall

 Minsky & Papert published a book named
Perceptrons in 1969, a rigorous analysis showing that
single-layer perceptrons could only learn linearly
separable functions.

. . 5 \‘;'- _:' - = ¥ ; -4.
i\ .'\ ".'- "
B - - P
\. . -
\'\f“']_E =
3 N~
- - ‘-\
\

&
" Perceptrons

-

:)- S —

—

> Highlighting the XOR problem.

Minsky & Papert 1969

The Al Winter

10 years from prosperity to fall

 Minsky & Papert published a book named

Perceptrons in 1969, a rigorous analysis showing that
single-layer perceptrons could only learn linearly

separable functions.

> Highlighting the XOR problem.

The *And/Or” Theorem

4

4.0
In this chapter we prove the ““And/Or” theorem stated in §1.5.

Theorem 4.0: There exist predicates ¥, and ¥, of order | such that
Y, A ¥sand ¢, V ¥, are not of finite order.

We prove the assertion for ¥, A ¢,. The other half can be proved
in exactly the same way. The techniques used in proving this
theorem will not be used in the sequel and so the rest of the
chapter can be omitted by readers who don’t know, or who dis-
like, the following kind of algebra.

4.1 Lemmas

We have already remarked in §1.5 that if R = 4 U B U C the
predicate [[X M A| > |X M C|1is of order 1, and stated without
proof that if 4, B, and C are disjoint (see Figure 4.1), then

gy

il SR

/ il

& A

Figurc4.1

(X NAl>IxNchAUxX N Bl>IxXxnN Ch

is not of bounded order as |R| becomes large. We shall now
prove this assertion. We can assume without any loss of generality
that the three parts of R have the same size M = |4| = |B| = |C|,
and that |R| = 3M. We will consider predicates of the stated
form for different-size retinas. We will prove that

If Yu(X) is the predicate of the stated form for [R| = 3M, then
the order of ¢, increases without bound as M — =

The proof follows the pattern of proofs in Chapter 3. We shall
assume that the order of {{,} is bounded by a fixed integer N

Minsky & Papert 1969

The Al Winter

10 years from prosperity to fall

 Minsky & Papert published a book named
Perceptrons in 1969, a rigorous analysis showing that
single-layer perceptrons could only learn linearly
separable functions.

> Highlighting the XOR problem.
 This resulted in the first Al winter:

* Research funding agencies concluded that neural
networks had hit a theoretical dead end.

* Al research shifted towards symbolic logic, expert
systems, rule-based reasoning (n-gram models
were born in this stage!)

The **And/Or” Theorem

4

4.0
In this chapter we prove the “And/Or” theorem stated in §1.5.

Theorem 4.0: There exist predicates ¥, and ¥, of order | such that
Y, A ¥>and ¢, V ¢, are not of finite order.

We prove the assertion for ¥, A ¢,. The other half can be proved
in exac tly the same way. The techniques used in proving this
theorem will not be used in the sequel and so the rest of the
chapter can be omitted by readers who don’t know, or who dis-
like, the following kind of algebra.

4.1 Lemmas

We have already remarked in §1.5 that if R = 4 U B U C the
predicate [[X M A| > |X M C|1is of order 1, and stated without
proof that if 4, B, and C are disjoint (see Figure 4.1), then

Figurc 4.1

(xNnalslxNnchAUxnBl>Ixn ch

is not of bounded order as |R| becomes large. We shall now
prove this assertion. We can assume without any loss of generality
that the three parts of R have the same size M = |4| = [B| = |C]|,
and that |R| = 3M. We will consider predicates of the stated
form for different-size retinas. We will prove that

If Yu(X) is the predicate of the stated form for [R| = 3M, then
the order of ¢, increases without bound as M — =

The proof follows the pattern of proofs in Chapter 3. We shall
assume that the order of {{,} is bounded by a fixed integer N

Minsky & Papert 1969

Interium Summary 2

 The XOR Problem demonstrates a crucial limit of a single-neuron perceptron.
* Perceptron can only learn linearly separable patterns.

* This triggers the first Al winter after the initial Al hype for 10 years.

0 O O—= v 0 O——< *— 0 O *—
1 ‘ "1 1

a) Xl AND X2 b) Xl OR X2 C) Xl XOR X2

The Revival of Neural Networks
1980s

One Solution to the XOR Problem

What if we use more than one layer? y= {0 KW x+b<0
I, ifw-x+b>0

One Solution to the XOR Problem

What if we use more than one layer? . {0, fw-Xx+b<0

I, ifw-x+b>0

 Here is one way to think about it. By definition:

One Solution to the XOR Problem

What if we use more than one layer? y= {0 KW x+b<0
I, ifw-x+b>0

 Here is one way to think about it. By definition:

e XOR = exclusive OR: xx1 OR x2, but not both

One Solution to the XOR Problem

What if we use more than one layer? y= {0 KW x+b<0
I, ifw-x+b>0

 Here is one way to think about it. By definition:

e XOR = exclusive OR: xx1 OR x2, but not both

. Formally: (x1 OR x2) AND (NOT (x1 AND x2))

One Solution to the XOR Problem

What if we use more than one layer? y= {0 KW x+b<0
I, ifw-x+b>0

 Here is one way to think about it. By definition:

e XOR = exclusive OR: xx1 OR x2, but not both
« Formally: (x1 OR x2) AND (NOT (x1 AND x2))

* |s it possible to do it compositionally?

One Solution to the XOR Problem

What if we use more than one layer? y= {0 KW x+b<0
I, ifw-x+b>0

 Here is one way to think about it. By definition:

e XOR = exclusive OR: xx1 OR x2, but not both
« Formally: (x1 OR x2) AND (NOT (x1 AND x2))

* |s it possible to do it compositionally?

 Lethl = (x1 OR x2), h2 = (x1 AND x2)

One Solution to the XOR Problem

What if we use more than one layer? y= {0 KW x+b<0
I, ifw-x+b>0

 Here is one way to think about it. By definition:

e XOR = exclusive OR: xx1 OR x2, but not both
« Formally: (x1 OR x2) AND (NOT (x1 AND x2))

* |s it possible to do it compositionally?

 Lethl = (x1 OR x2), h2 = (x1 AND x2)

. Then, (x1 XOR x2) == hl AND (NOT h2)

One Solution to the XOR Problem

What if we use more than one layer? y= {0 KW x+b<0
I, ifw-x+b>0

 Here is one way to think about it. By definition:
e XOR = exclusive OR: xx1 OR x2, but not both
 Formally: (xx1 OR x3) AND (NOT (x1 AND x23))
* |s it possible to do it compositionally?
 Lethl = (x1 OR x2), h2 = (x1 AND x2)
+ Then, (x1 XOR x2) ==h1l AND (NOT h2)

 We do know how to express AND, and here is a simple tweak for NOT:

One Solution to the XOR Problem

What if we use more than one layer? y= {0 KW x+b<0
I, ifw-x+b>0

x1 AND (NOT x2)

 Here is one way to think about it. By definition:

e XOR = exclusive OR: xx1 OR x2, but not both

f(2)

. Formally: (x1 OR x2) AND (NOT (x1 AND x2))

* |s it possible to do it compositionally?
 Lethl = (x1 OR x2), h2 = (x1 AND x2)
 Then, (x1 XOR x23) ==hl AND (NOT h2)

 We do know how to express AND, and here is a simple tweak for NOT:

One Solution to the XOR Problem

What if we use more than one layer? y= {0 KW x+b<0
I, ifw-x+b>0

x1 AND (NOT x2)

 Here is one way to think about it. By definition:

« XOR = exclusive OR: x1 OR x2, but not both e

nonlinear
f (Z) transformation
iInto a single node

. Formally: (x1 OR x2) AND (NOT (x1 AND x2))

* |s it possible to do it compositionally?

 Lethl = (x1 OR x2), h2 = (x1 AND x2)
e Then, (x1 XOR x2) ==hl AND (NOT h2)

 We do know how to express AND, and here is a simple tweak for NOT:

0, fw-x+b<0

One Solution to the XOR Problem HRN

What if we use more than one layers?

 Here Is one implementation:

x1l XOR x2
i (Z)

1 0

f (Z) ‘@ @
[>T
(x1) (3, S

0, fw-x+b<0

One Solution to the XOR Problem HRN

What if we use more than one layers?

« Component 1: the OR gate

J (z)

1

0, fw-x+b<0

One Solution to the XOR Problem HRN

What if we use more than one layers?

« Component 2: the AND gate
x1 AND x2

0, fw-x+b<0

One Solution to the XOR Problem HRN

What if we use more than one layers?

e Component 3: the AND gate with NOT

J (z)

x1 AND (NOT x2)

One Solution to the XOR Problem

Let’s verify!

0 x1 XOR x23 after transformation through f
f(2)

A/ \4

x1l x2 hl;, hd, hl h2 | ¥,

oo oI R
f(2) > O 1|1 o1 O
" 1 0|1 0|1 O
() () O (=) I

W&
AN e

Before transformation through f

1 0

y
O O
1 1
1 1
-1 O

One Solution to the XOR Problem

Let’s verify!

X1l XOR x23
i (z)

0
I x1l x23 hl;, hd; hl h2

BB O il
H ® O

e e
— O O

O +H +H O | <«

One Solution to the XOR Problem

Let’s verify!

X1l XOR x23
i (z)

OR
I 2 x1 x2 hlyg hd,|hl | h3 | Yo | V
@ @ @ 0O 0|0 -1|lo0|lo0o] 0] oO
1(2) ™7 ‘ o 1|1 of|1|lo0]1 1
] ’\ﬁ 1 o1 o|l1]lo0o]1 1
0 1 112 1|1l 1]-1]o0

One Solution to the XOR Problem

Let’s verify!
f(z) x1 XOR x2 OR AND
1 0
x1 x2 hlyg ha,|hl ||h3 | Yo | V
@ @ @ O O,/ 0 -1]o}jlojJo o
23 O 1,1 o/f|1flo]1 1
1.‘ 1 o1 of|1llo| 1|1
0 1 1|2 1 |1|f1]|-1]o0

One Solution to the XOR Problem

Let’s verify!

f(z) x1 XOR x2 OR AND XOR

1 0

oo R R
1(2) o 111 ol1llo]l 1
" 1 0|1 o |1]lo]1
() () | (=) Uy

O +H +H O | <«

Why Adding a Layer Solves the Problem?

Key ldea = using nonlinear transformation at intermediate stages

Why Adding a Layer Solves the Problem?
Key ldea = using nonlinear transformation at intermediate stages

X
2A

1 @ O

* For a Perceptron, the nonlinearly
transformated result directly becomes
the output;

= [here Is no chance for the model to
do further computation on it;

0 O o—
1

X1

a) The original X space

Why Adding a Layer Solves the Problem?
Key ldea = using nonlinear transformation at intermediate stages

X
2A

* For a Perceptron, the nonlinearly

transformated result directly becomes L9 O
the output;
= There is no chance for the modelto " * *

do further computation on it;

a) The original X space

* For a two-layer neural network: it can use the nonlinear transformation of the
first layer to extract whatever useful features (in our case: AND and OR);

Why Adding a Layer Solves the Problem?
Key ldea = using nonlinear transformation at intermediate stages

X
2A

* For a Perceptron, the nonlinearly

transformated result directly becomes ' ¢ . ! e
the output;
= There is no chance for the modelto " * T 0 o= o

do further computation on it;

a) The original X space b) The new (linearly separable) hspace

* For a two-layer neural network: it can use the nonlinear transformation of the
first layer to extract whatever useful features (in our case: AND and OR);

 And it can use the extracted hidden features to do more computation (further

nonlinear transformation) — it could be that those intermediate features are
transformed to a linearly separable space!

1

0

More on Nonlinearity

Nonlinear transformation are extremely powerful

https://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture6.pdf

1

0

More on Nonlinearity

Nonlinear transformation are extremely powerful

https://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture6.pdf

More on Nonlinearity

Nonlinear transformation are extremely powerful

1 v I
b 4 x

‘e.g. Tranforming to the
Polar coordinate to
'make an originally non- |
linearly-separable '
Eataset separable!

https://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture6.pdf

Generalizing the Architecture

From Logistic Regression to Multinomial Logistic Regression

Generalizing the Architecture

From Logistic Regression to Multinomial Logistic Regression

* | et’s consider a simple generalization:
Imagine we are doing a classification task
with multiple classes / labels. How to
represent multiple outcomes?

Decision surface of LogisticRegression (multinomial)

Generalizing the Architecture

From Logistic Regression to Multinomial Logistic Regression

* | et’s consider a simple generalization:
Imagine we are doing a classification task
with multiple classes / labels. How to
represent multiple outcomes?

Decision surface of LogisticRegression (multinomial)

e Jwo tweaks:

> Have multiuple output nodes (one per
class);

» Switch the activation function to
softmax;

Generalizing the Architecture

From Logistic Regression to Multinomial Logistic Regression

* | et’s consider a simple generalization:
Imagine we are doing a classification task

with multiple classes / labels. How to
represent multiple outcomes?

e Jwo tweaks:

> Have multiuple output nodes (one per
class);

» Switch the activation function to
softmax;

* This is also known as multinomial logistic
regression.

Decision surface of LogisticRegression (multinomial)

Generalizing the Architecture

Multinomial Logistic Regression

o Suppose we have n input features and m classes;

 One way to represent it is a 1-layer neural network with multiple output nodes
(i.e., a layer of neurons)

 \WWe don’t count the input layer as a layer, so this network has 1 layer.
y = [y, -, ,,] is a vector:

W is a matrix y = softmax(Wx + b)

.. bisavector

Input a list *
otscatars (1) () () (O @) (B

Softmax: A generalization of Sigmoid

Getting a probability distribution for multi-class classification!

Softmax: A generalization of Sigmoid

Getting a probability distribution for multi-class classification!

» Sigmoid takes a real value and outputs a probability in range [0, 1];

Softmax: A generalization of Sigmoid

Getting a probability distribution for multi-class classification!

» Sigmoid takes a real value and outputs a probability in range [0, 1];

o Softmax takes a list of real values and outputs a probability distribution (a list
of the same length as the input that sums to 1).

Softmax: A generalization of Sigmoid

Getting a probability distribution for multi-class classification!

» Sigmoid takes a real value and outputs a probability in range [0, 1];

o Softmax takes a list of real values and outputs a probability distribution (a list
of the same length as the input that sums to 1).

« Formally: for a vector z of dimensionality &:

exp(z;) exp(z,) exp(z;)

...,

Y expi) Y oexp) YL exp(z)

softmax(z) =

Softmax: A generalization of Sigmoid

Getting a probability distribution for multi-class classification!

» Sigmoid takes a real value and outputs a probability in range [0, 1];

o Softmax takes a list of real values and outputs a probability distribution (a list
of the same length as the input that sums to 1).

« Formally: for a vector z of dimensionality &:

exp(z;) exp(z,) exp(z;)

...,

Y expi) Y oexp) YL exp(z)

softmax(z) =

 An example:
z=[0.6,1.1, —1.5,1.2,3.2, —1.1]
softmax(z) = [0.055, 0.090, 0.006, 0.099, 0.74,0.010]

Softmax: A generalization of Sigmoid

Getting a probability distribution for multi-class classification!

» Sigmoid takes a real value and outputs a probability in range [0, 1];

o Softmax takes a list of real values and outputs a probability distribution (a list
of the same length as the input that sums to 1).

« Formally: for a vector z of dimensionality &:

exp(z;) exp(z,) exp(z;)

...,

Y expi) Y oexp) YL exp(z)

2=106,1.1, - 1.5,1.2[3.2) — 1.1]

softmax(z) = [0.055,0.090, 0.006,0.099,.74) 0.010]

softmax(z) =

 An example:

Generalizing the Notations

Representing a list of neurons

Generalizing the Notations

Representing a list of neurons

* Previously, we have only 1 neuron, so the weights are represented as a vector.

Generalizing the Notations

Representing a list of neurons

* Previously, we have only 1 neuron, so the weights are represented as a vector.

 Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

Generalizing the Notations

Representing a list of neurons

* Previously, we have only 1 neuron, so the weights are represented as a vector.

 Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

e Suppose we have 2 input features and 3 neurons:

Generalizing the Notations

Representing a list of neurons

* Previously, we have only 1 neuron, so the weights are represented as a vector.

 Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

e Suppose we have 2 input features and 3 neurons:

W X Wx

01 1.0 1.4x0.14+(-0.2)x 1.0 —0.06
20 -=0.1 [_1042] = [14%X20+(-02)X(-0.)| =] 2.82

—-0.3 0.5 ' 1.4%(—0.3)+ (—=0.2) X 0.5 —0.52

Generalizing the Notations

Representing a list of neurons

* Previously, we have only 1 neuron, so the weights are represented as a vector.

 Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

e Suppose we have 2 input features and 3 neurons:

\1/\S/teight ﬁ)nqgcting ~_ W X Wx

R 10114 1.4 % 0.1 +(=0.2)x 1.0 _0.06
2.0 =0.1 [_(').2] = 1420+ (-02)x(=0.1)| =1 2.82

~03 0.5 1.4 % (—=0.3) + (=0.2) X 0.5 ~0.52

Generalizing the Notations

Representing a list of neurons

* Previously, we have only 1 neuron, so the weights are represented as a vector.

 Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

e Suppose we have 2 input features and 3 neurons:

Weight connecting ~—_ W X Wx
1st input to 1stneuron ~
1.0 1.4 % 0.1+ (=0.2) X 1.0 _006
2.0 =0.1 [—O 2] =114%X20+(-02)x(=0.1)] =] 2.82
_03 05 ' 1.4%(—=0.3) + (=0.2) X 0.5 _0.52

Generalizing the Notations

Representing a list of neurons

* Previously, we have only 1 neuron, so the weights are represented as a vector.

 Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

e Suppose we have 2 input features and 3 neurons:

\1Neight Conqecting ~—_ W X Wx
st jnput to 1stneuron ~
1.0 1.4 % 0.1+ (=0.2) X 1.0 _006
2.0 —=0.1 [—O 2] =114%X20+(-02)x(=0.1)] =] 2.82
Weight connecting 2nd —O.34} | 1.4 X (_03) + (—02) X 0.5 —0.52

iInput to 319 neuron —

Generalizing the Notations

Representing a list of neurons

* Previously, we have only 1 neuron, so the weights are represented as a vector.

 Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

e Suppose we have 2 input features and 3 neurons:

Weight connecting ~—_ W X Wx
1st input to 1stneuron ~
2.0 —=0.1 : =114%X20+(-02)x(=0.1)] =] 2.82

Weight connecting 2nd —O.34} 1.4 X (_03) + —0.52

iInput to 319 neuron —

Generalizing the Notations

Representing a list of neurons

* Previously, we have only 1 neuron, so the weights are represented as a vector.

 Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

e Suppose we have 2 input features and 3 neurons:

Weight connecting ~_ W X Wx

1st input to 1stneuron 10 -|- (—02) X 1.0 —0.06

20 =0.1 1.4X2.04+(-02)x(=0.1)] =1 2.82

Weight connecting 2nd —0.3‘> 1.4 X (_03) + —0.52

iInput to 319 neuron —

In general: position [i, j] in W is the weight connecting input j to neuron i.]

Generalizing the Notations, cont.
Handling the Bias Term

» As before, we incorporeate the bias vector b into W and X by adding a
constant value 1 into the input vector, as follows:

Generalizing the Notations, cont.
Handling the Bias Term

» As before, we incorporeate the bias vector b into W and X by adding a
constant value 1 into the input vector, as follows:

0.1 10|, 0.2 0.14
2.0 —0.1 [—62 + 1.0 | =]382
| -03] 1[-0.82

—0.3 0.5
W X b Wx + b

Generalizing the Notations, cont.
Handling the Bias Term

» As before, we incorporeate the bias vector b into W and X by adding a
constant value 1 into the input vector, as follows:

0.1 10]y, 0.2 0.14 0.1 10 02]714 0.14
20 —0.1 [_002 + 10| =38 (w20 -01 10][|-02]=]382

—0.3 0.5 —0.3 —0.82 —-03 05 =03 1.0 —0.82
W X b Wx +Db W X Wx +Db

Generalizing the Notations, cont.
Handling the Bias Term

» As before, we incorporeate the bias vector b into W and X by adding a
constant value 1 into the input vector, as follows:

/\
01 1.0, , 0.2 0.14 0.1 1.0 1.4 0.14
2.0 -0.1 [“l+110] =138 —} 2.0 -0.1 —02| =1 3.82
—02
~03 05 —03 —0.82 ~03 05 1.0 —0.82

W X b Wx + b W X Wx + b

Generalizing the Notations, cont.
Handling the Bias Term

» As before, we incorporeate the bias vector b into W and X by adding a

constant value 1 into the input vector, as follows:
0.1 1.0 14 0.2 0.14 0.1 1.0 1.4 0.14
20 -0.1 [Sl 10| =382 (w20 -01 —02| =] 3.82
—0.2
~0.82
\uY X b Wx + b W b X Wx + b

—-0.3 0.5 —0.3 —0.32 —0.3 0.5

Generalizing the Notations, cont.
Handling the Bias Term

» As before, we incorporeate the bias vector b into W and X by adding a
constant value 1 into the input vector, as follows:

/\
01 1.0 0.2 0.14 01 1.0 0.14
2.0 -0.1 [+110]| =138 —} 2.0 -0.1 - | 3.82

~03 05 ~023 —0.82 ~03 05 —0.82

W X b Wx +b W b X Wx +b

1.4
—0.2

IAdd b as another column of W, and stick a 1 to the input vector X.

Generalizing the Notations, cont.

Folding the nonlinear transformation into the neurons

Generalizing the Notations, cont.

Folding the nonlinear transformation into the neurons

* A neuron in a neural network computes the linearly transformed weighted
sum: f(WX + b), where f can be softmax, sigmoid, ReLU, tanh, etc.

Generalizing the Notations, cont.

Folding the nonlinear transformation into the neurons

Layer 1

* A neuron in a neural network computes the linearly transformed weighted
sum: f(WX + b), where f can be softmax, sigmoid, ReLU, tanh, etc.

e A layer is a list of neurons, defined by W, b, and the nonlinear transformation.

Generalizing the Notations, cont.

Folding the nonlinear transformation into the neurons

Output values

Layer 1

Input values @ ‘

* A neuron in a neural network computes the linearly transformed weighted
sum: f(WX + b), where f can be softmax, sigmoid, ReLU, tanh, etc.

e A layer is a list of neurons, defined by W, b, and the nonlinear transformation.

e |nput nodes (X) don’t count as a layer; and output values also don't.

Generalizing the Notations, cont.

Our XOR network is a two-layer neural network:

Y Output values

@ @ @ Input values

Generalizing the Notations, cont.

Our XOR network is a two-layer neural network:

Y Output values

f(Z) f(Z) @ Layer 1
@ @ @ Input values

Generalizing the Notations, cont.

Our XOR network is a two-layer neural network:

Y Output values

f(Z) Layer 2
f(Z) f(Z) @ Layer 1
@ @ @ Input values

Generalizing the Notations, cont.

Multi-layer Neural Networks

This is a 3-layer
neural network

Y2

Y1

Input layer X (vector)

Generalizing the Notations, cont.

Multi-layer Neural Networks iy v This is a 3-layer

neural network

Hidden state h, (vector)
h1 — ReLU(WIX + bl)

Input layer X (vector)

Generalizing the Notations, cont.

Multi-layer Neural Networks iy v This is a 3-layer

neural network

Hidden state h, (vector)
h2 — R@LU(thl —+ bz)

| Hidden state h, (vector)
h1 — ReLU(WIX + bl)

Input layer X (vector)

Generalizing the Notations, cont.

Multi-layer Neural Networks iy v This is a 3-layer

neural network

y = softmax(W;h, + b;)

| Hidden state h, (vector)
h2 — R@LU(thl —+ bz)

| Hidden state h, (vector)
h1 — ReLU(WIX + bl)

Input layer X (vector)

Generalizing the Notations, cont.

Multi-layer Neural Networks iy v This is a 3-layer

neural network

I:Output y (vector)
y = softmax(Wsh, + by)

| Hidden state h, (vector)
h2 — R@LU(thl —+ bz)

| Hidden state h, (vector)
h1 — ReLU(WIX + bl)

Input layer X (vector)

Terminology for this type of Neural Networks

Different names for the same architecture

Terminology for this type of Neural Networks

Different names for the same architecture

 Feedforward Neural Network (FFNN)

* Because layers are feeding foward to each other —
the output of layer [becomes the input of layer [+ 1;

Terminology for this type of Neural Networks

Different names for the same architecture

 Feedforward Neural Network (FFNN)

* Because layers are feeding foward to each other —
the output of layer [becomes the input of layer [+ 1;

* Fully-connected Neural Network (FCNN)

* From layer [to layer [+ 1, all nodes are connected to
all other nodes;

Terminology for this type of Neural Networks

Different names for the same architecture

 Feedforward Neural Network (FFNN)

* Because layers are feeding foward to each other —
the output of layer [becomes the input of layer [+ 1;

* Fully-connected Neural Network (FCNN)

* From layer [to layer [+ 1, all nodes are connected to

all other nodes;

 Multi-layer Perceptron (MLP)

* This generalizes a single-neuron Perceptron into a
multi-neuron, multi-layer network

Terminology for this type of Neural Networks

More generally, at the field level

Terminology for this type of Neural Networks

More generally, at the field level

e Connectionist Models

* Named after the school of thought “connectionism” (vs. “symbolism);

Terminology for this type of Neural Networks

More generally, at the field level

 Connectionist Models
* Named after the school of thought “connectionism” (vs. “symbolism);
 Parallel Distributed Processing (PDP)

* Each input is multiplied by a weight, and such computations are
independent from each other, thus can be done in parallel / simultaneously.

Terminology for this type of Neural Networks

More generally, at the field level

 Connectionist Models
* Named after the school of thought “connectionism” (vs. “symbolism);
 Parallel Distributed Processing (PDP)

* Each input is multiplied by a weight, and such computations are
independent from each other, thus can be done in parallel / simultaneously.

 Deep Learning

* Recent branding for neural networks with many layers;

Expressivity of Neural Networks

A significant upgrade

Expressivity of Neural Networks

A significant upgrade

* 1-layer Perceptrons are very limited;

Expressivity of Neural Networks

A significant upgrade

* 1-layer Perceptrons are very limited;

 But having one more layer makes it
much more powerful!

Expressivity of Neural Networks

A significant upgrade

1-layer Perceptrons are very limited,

But having one more layer makes it
much more powerful!

In fact, a 2-layer perceptron can
approximate any function to an
arbitrary degree of precision!

> This Is an “in principle” claim;

> Assumes arbitrarily large layers (i.e.,
infinite neurons);

Multilayer Feedforward Networks are
Universal Approximators

KUur: HORNIK

Technische Umiversitat Wien

MAXWELL STINCHCOMBE AND HALBERK WHIIE
University of California, San Diego

(Received 16 September 1988; revised and accepted 9 March 1989)

Interium Summary 3

From individual neurons to networks

Interium Summary 3

From individual neurons to networks

* Multi-layer perceptron / Neural networks can handle XOR.

Interium Summary 3

From individual neurons to networks

* Multi-layer perceptron / Neural networks can handle XOR.

 Multinomial logistic regressoin is a specific version of
neural networks;

Interium Summary 3

From individual neurons to networks

* Multi-layer perceptron / Neural networks can handle XOR.

 Multinomial logistic regressoin is a specific version of
neural networks;

* \We use matrix and vector notations to represent neural
networks of arbitrary depths;

Interium Summary 3

From individual neurons to networks

* Multi-layer perceptron / Neural networks can handle XOR.

 Multinomial logistic regressoin is a specific version of
neural networks;

* \We use matrix and vector notations to represent neural
networks of arbitrary depths;

 Neural networks that have more than 1 layers is
ARBITRARILY EXPRESSIVE in principle: they can
approximate any function given arbitrarily many neurons;

Multilayer Feedforward Networks are
Universal Approximators

KUrR' HORNIK

Technische Universitat Wien

Back Propagation & Gradient Descent
1974 (first proposed) & 1986 (polularized)

Revisit the Perceptron Learning Rule

Error-based Learning as the secret sauce

Revisit the Perceptron Learning Rule

Error-based Learning as the secret sauce

» Remember the perceptron learning rule: w := w + n(y — y)X

Revisit the Perceptron Learning Rule

Error-based Learning as the secret sauce

» Remember the perceptron learning rule: w := w + n(y — y)X

> Roughly: update each weight proportional to the error (i.e., the loss between
predicted y and true label y).

Revisit the Perceptron Learning Rule

Error-based Learning as the secret sauce

» Remember the perceptron learning rule: w := w + n(y — y)X

> Roughly: update each weight proportional to the error (i.e., the loss between
predicted y and true label y).

« How to do it for a neural network”? — How to compute the error across multiple
layers?

Revisit the Perceptron Learning Rule

Error-based Learning as the secret sauce

» Remember the perceptron learning rule: w := w + n(y — y)X

> Roughly: update each weight proportional to the error (i.e., the loss between
predicted y and true label y).

« How to do it for a neural network”? — How to compute the error across multiple
layers?

> Assume we have some loss function that compute the difference between two
vectors: L(y — y)

Revisit the Perceptron Learning Rule

Error-based Learning as the secret sauce

» Remember the perceptron learning rule: w := w + n(y — y)X

> Roughly: update each weight proportional to the error (i.e., the loss between
predicted y and true label y).

« How to do it for a neural network”? — How to compute the error across multiple
layers?

> Assume we have some loss function that compute the difference between two
vectors: L(y — y)

> Goal = to derive gradient descent with the help of backpropagation!

Revisit the Perceptron Learning Rule

Error-based Learning as the secret sauce

» Remember the perceptron learning rule: w := w + n(y — y)X

> Roughly: update each weight proportional to the error (i.e., the loss between
predicted y and true label y).

« How to do it for a neural network”? — How to compute the error across multiple
layers?

> Assume we have some loss function that compute the difference between two
vectors: L(y — y)

> Goal = to derive gradient descent with the help of backpropagation!

d
Update each weight: w' = w — nd—L(f(x; w),y), where L(f(x;w),y) = L(y — y)
W

Computation Graphs

Representing the procedure of the computation

Computation Graphs

Representing the procedure of the computation

* For training, we need the derivative of the loss with respect to each weight
In every layer of the network;

» But the loss is computed only at the very end of the network....

« How do we know how much a weight at Layer 1 contribute the final loss?

Computation Graphs

Representing the procedure of the computation

* For training, we need the derivative of the loss with respect to each weight
In every layer of the network;

» But the loss is computed only at the very end of the network....

« How do we know how much a weight at Layer 1 contribute the final loss?

* Solution = represent the computation of the entire neural network with a (very
big) computation graph!

* A computation graph represents the entire process of computing a function
(which can be a very complex composition of multiple functions) —
representing the dependencies between any two steps of the computation.

Computation Graphs

[Exercise] Try to construct a computation graph for a simple equation

 Say, here is a dummy loss function with 3 inputs: L(a. b.c) = c(a + 2b)

* |n a computation graph: a node represents a value, and an edge represents a
function / arithmetic operation / computation.

+ Try to construct a computation graph for L!

Computation Graphs

[Exercise] Try to construct a computation graph for a simple equation

 Say, here is a dummy loss function with 3 inputs: L(a. b.c) = c(a + 2b)

* |n a computation graph: a node represents a value, and an edge represents a
function / arithmetic operation / computation.

+ Try to construct a computation graph for L!

o
ONNG

Computation Graphs

[Exercise] Try to construct a computation graph for a simple equation

 Say, here is a dummy loss function with 3 inputs: L(a. b.c) = c(a + 2b)

* |n a computation graph: a node represents a value, and an edge represents a
function / arithmetic operation / computation.

+ Try to construct a computation graph for L!

()
(o —G==» O

Computation Graphs

[Exercise] Try to construct a computation graph for a simple equation

 Say, here is a dummy loss function with 3 inputs: L(a. b.c) = c(a + 2b)

* |n a computation graph: a node represents a value, and an edge represents a
function / arithmetic operation / computation.

+ Try to construct a computation graph for L!

@9
@

Computation Graphs

[Exercise] Try to construct a computation graph for a simple equation

 Say, here is a dummy loss function with 3 inputs: L(a. b.c) = c(a + 2b)

* |n a computation graph: a node represents a value, and an edge represents a
function / arithmetic operation / computation.

+ Try to construct a computation graph for L!

@9
@ e

Computation Graphs

[Exercise] Try to construct a computation graph for a simple equation
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c=—-2

—»e—a+

@~./ P

Computation Graphs

[Exercise] Try to construct a computation graph for a simple equation
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c=—-2

a=273 8—5

—»e—a+

Computation Graphs

[Exercise] Try to construct a computation graph for a simple equation
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c=—-2

@9

a=273

Forward Pass

Computation Graphs

[Exercise] Try to construct a computation graph for a simple equation
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c=—-2

a=3 I 1
+‘~

—’6 a+d 'Remember:

We want to know |

b=1 d =2 how much does |

a, b, c each
, c = — 2/v contribute to the |
@ final loss L

Forward Pass

Backpropagation
Responsibility attribution through gradient

a=23

@9

Backpropagation
Responsibility attribution through gradient
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2;

« We don’t know immediately how much a contribute to L...

 But we do know how much ¢ and e contributes (since they are the final step)!

a=3 6—5

—»e—a+

Backpropagation
Responsibility attribution through gradient
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2;

« We don’t know immediately how much a contribute to L...

 But we do know how much ¢ and e contributes (since they are the final step)!

a=23
b = d=?2

Backpropagation
Responsibility attribution through gradient
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2;

« We don’t know immediately how much a contribute to L...

 But we do know how much ¢ and e contributes (since they are the final step)!

a=23
: L = ce
b = d=?2

Backpropagation
Responsibility attribution through gradient
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2;

« We don’t know immediately how much a contribute to L...

 But we do know how much ¢ and e contributes (since they are the final step)!

a=23

L = ce

> — =C=—
b: d:2 06

Backpropagation
Responsibility attribution through gradient
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2;

« We don’t know immediately how much a contribute to L...

 But we do know how much ¢ and e contributes (since they are the final step)!

a=23
L = ce
—> — = C = —
@ oL
— > —=e=9)5
(4= 5

Backpropagation
Responsibility attribution through gradient
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2;

« We don’t know immediately how much a contribute to L...

« We use e’s contribute to compute d’s contribution.

Backpropagation
Responsibility attribution through gradient
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2;

« We don’t know immediately how much a contribute to L...

« We use e’s contribute to compute d’s contribution.

e=a+d

Backpropagation
Responsibility attribution through gradient
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2;

« We don’t know immediately how much a contribute to L...

« We use e’s contribute to compute d’s contribution.

The Chain Rule

Backpropagation) = u(v(w(x))
Responsibility attribution through gradient o ou

e L(a.b.c)=cla+2b).Nowleta=3,b=1,c=—2; ox v dw ox

« We don’t know immediately how much a contribute to L...

« We use e’s contribute to compute d’s contribution.

The Chain Rule

Backpropagation fx) = u(v(w(x)))
Responsibility attribution through gradient 9 _

e L(a.b.c) =c(la+2b).Nowleta=3,b=1,c=—2; ox v dw ox

« We don’t know immediately how much a contribute to L...

« We use e’s contribute to compute d’s contribution.

e=a+d
—> — =
()L Py
dl. 0L oe
—> — =
ad de od
=1xX-=-2

=2

The Chain Rule

Backpropagation) = u(ww(x)))
Responsibility attribution through gradient 9 _ Ou ow
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2; ox ov. Jdw 0x

« We don’t know immediately how much a contribute to L...

« We continue to compute the contribution of a and b, respectively.

a =23 _
de € =3 e=a+d
=1
— — ad ae
= — =1
da
ol. OL oe
—> — =
da de da

=1 xX-=2
= -2

The Chain Rule

Backpropagation) = u(ww(x)))
Responsibility attribution through gradient 9 _ Ou ow
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2; ox ov. Jdw 0x

« We don’t know immediately how much a contribute to L...

« We continue to compute the contribution of a and b, respectively.

a=3
oe d=72b
oL __» o0
oa @—a' 9 _,
bzl d:2 €: ab
d oL oL oe od
—> — =
oL b ;e _\d=2b ob de dd ob
B ob N = —-2%x1x%x2
oL _ _ 2

The Chain Rule
Backpropagation) = u(ww(x)))
Responsibility attribution through gradient o ou ow
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2; ox dv ow Ox
* Derivative on an edge: /ocal dependency;

* Derivative on node: /ong dependency all the way from the final node (L)

a=3 .
. ¢ =3 d =2b
EY —_——— 3 ee=a+
Ja = — 10 :>a_d:2
L =ce 0L _ 0L de od

o b d=2b c=—-2 ob _ oe dd ob
T 7 @ aL _ . — —2%x1x%x2
_:—2 0(3 __4
od —

The Chain Rule
Backpropagation) = u(ww(x)))
Responsibility attribution through gradient o ou ow
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2; ox dv ow Ox
* Derivative on an edge: /ocal dependency;

* Derivative on node: /ong dependency all the way from the final node (L)

a=73 _
. ¢ =3 d =2b
= e = Edge: local
a i L=—10 =%,
L =ce 0L _ 0L de od

o b d=2b c=—2 ob _ oe dd ob
T 7 @ aL _ . — —2%x1x%x2
_:—2 aC __4
od —

The Chain Rule
Backpropagation) = u(ww(x)))
Responsibility attribution through gradient o ou ow
e [(a.b.c) =cla+2b).Nowleta=3,b=1,c = —2; ox dv ow Ox
* Derivative on an edge: /ocal dependency;

* Derivative on node: /ong dependency all the way from the final node (L)

a=73 _
. ¢ =3 d =2b
= e = Edge: local
a i L=—10 =%,
L =ce 0L _ 0L de od

oL b d=2b =77 b oe od db
E:—4 o @ (3_L:5 NOde:|°"9=—2X1X2
2 oc — _4

Backpropagation — Gradient Descent

Learning/Updating the weights to minimize loss

d
Update each weight: W' = w — nd—L(f(x;w),y), where L(f(x;w),y) = L(y — y)
W

Backward Pass: Error Propagation

Gradient Descent in Neural Networks

For every training tuple (x, y)
° Run forward computation to find our estimate pctuatanswery @@ -

> Run backward computation to update weights:

> For every output node
> Compute loss L between true y and the estimated y
> For every weight w from hidden layer to the output layer
> Update the weight
> For every hidden node

> Assess how much blame it deserves for the current answer
> For every weight w from input layer to the hidden layer
> Update the weight

Loss function L(V, y)

System output y

The computation quickly blows up

Verify this when you are free!

For a simple two-layer
neural network:

The computation quickly blows up

Verify this when you are free!

For a simple two-layer
neural network:

02 0.34
-0.14

b3

-1-0 -0.98
-0.02

WoX1 + WyXo + b2

b,

{05 -052
1 0.02

2203 -04-0.41 -1 06054 4% 1.12
-0.03 .01 -0.02 0.06 -0.02

One round of gradient descent:

The computation quickly blows up

Verify this when you are free!

Example: Binary logistic regression
For a simple two-layer

- A 1 . .
neural network: cL@,y) =In(1 — ——qmmswn) Repeat from previous slide
~ - 1+ e—(w1x1+w2x2+b) 1
: L(y' y) T ln(1+ e—(w1x1+w2x2+b) 14 e—(w1x1+w2x2+b)) A|gebra
~ _ e—(w1x1+w2x2+b) AI ebra
’ L(y' y) _ ln(1+ e—(w1x1+w2x2+b)) ‘ g
« L(9,y) = In(e~W1¥1tw2X2+b)) _[n(1 + ¢~ (W1X1+W2xz+b)) Algebra
+ L3, y) = —(wyx; + wyx, + b) — In(1 + e~ Wixatwzxz+h)) Algebra
0 s N 1 —(Wa X1 +Wo X+ b Take partial
ow, LB.y) =—x 14+ e~(W1x1+w2x2+Db)) e~ (Wi twar;)(_xl) derivative
) R B e—(Wi1x1+wax2+Db) Alaebra
a_%L(y, y) - xl(_l + 1+ e—(w1x1+w2x2+b))) g
0 1(6 v) — —1 Algebra
’ aTL(y’ y) o x1(1+ e—(W1x1+W2x2+b))) g

One round of gradient descent: 1

Notes on Loss Functions

Bonus on math

* |f you wonder why perceptron learning uses + while neural network uses — to
update their weights...

Perceptron: w = w®7(y 9)x; Neural Network: w _w@—L(f(x W), y)
 Short answer: they are actually the same thing! Here is a derivation:

. 1
% For loss function L = E(y — 97 or L=—|ylog(® + (1 — y)log(1 -) |:
oL

% The gradient with respect to weight w. turns out to be: p
Wi

-y =y

* If we plug this into the gradient descent formula:

oL A A
WIS W=l = W= (- -9x)=w+ny-x

* The two minus signs cancels, giving the same direction as perception update.

Gradient Descent: Intuitions in 1D Space

Learning to minimize loss (as an optimization problem)

Loss

Parameter Value

Gradient Descent: Intuitions in 1D Space

Learning to minimize loss (as an optimization problem)

Random
starfing point

Loss

Parameter Value

Gradient Descent: Intuitions in 1D Space

Learning to minimize loss (as an optimization problem)

\
\

Random
starfing point

Loss

Parameter Value

Gradient Descent: Intuitions in 1D Space

Learning to minimize loss (as an optimization problem)

\
\

Random
starfing point

Loss

Parameter Value

Gradient Descent: Intuitions in 1D Space

Learning to minimize loss (as an optimization problem)

\
\

Random
starfing point

Loss

Parameter Value

Gradient Descent: Intuitions in 1D Space

Learning to minimize loss (as an optimization problem)

\
\

Random
starfing point

Loss

Parameter Value

Gradient Descent: Intuitions in 1D Space

Learning to minimize loss (as an optimization problem)

A

We continue making \
such jumps until we \
reach a minimum, Rakdom
where going in any starfing point /
direction would)
Loss increase the loss

Parameter Value

Gradient Descent: Intuitions in High Dimensions
Learning to minimize loss (as an optimization problem)

%
()
9,
O «2 (.«@r”

>

uuuuuuuu
||||||||

AN

Al
nnnnn

Interium Summary 4

Backpropagation and Gradient Descent

Interium Summary 4

Backpropagation and Gradient Descent

 Backpropagation (a method for efficiently computing the gradients) tells us
*what the gradients are™ for each weight.

 Computing dependencies across layers through chain rule in computation
graphs;

Interium Summary 4

Backpropagation and Gradient Descent

 Backpropagation (a method for efficiently computing the gradients) tells us
*what the gradients are™ for each weight.

 Computing dependencies across layers through chain rule in computation
graphs;

 Gradient descent (an optimization algorithm) tells us *how to update* the
weight.

 |teratively optimizing to minimize the loss for each training example.

* A forward pass (generating prediction) followed by a backward pass
(computing the gradient and updating the weights).

Development of Neural Network

Architectures
1990s - present

Recurrent Neural Network (RNN)
INPUT LAYER @
oD Laver "

Introducing the notion of Time
i ?
OUTPUT LAYER a @ /:

«ROLLED» «UNROLLED»

Recurrent Neural Network (RNN)

Introducing the notion of Time

e | @ | |@ @ @ @
HIDDEN LAYER " ‘ > ‘
e | (@D | @ @ @ E

«ROLLED» «UNROLLED»

 Motivation: Standard feed-forward networks couldn’t handle sequential or time-
dependent data, since they treat all inputs as independent.

Recurrent Neural Network (RNN)

Introducing the notion of Time

e | @ || @ @ @
HIDDEN LAYER " ‘ > ‘
| @ | @ @ @

«ROLLED» «UNROLLED»

 Motivation: Standard feed-forward networks couldn’t handle sequential or time-
dependent data, since they treat all inputs as independent.

 Usefulness: RNNs introduce recurrent connections that let information persist
across time steps, enabling modeling of language, speech, and temporal patterns.

Long Short-Term Memory (LSTM)

Handling long-distance dependencies through managing memory

. Updated cell state to help
LSTM Recurrent Unit determine new hidden state

Cell state

Hidden state

--

Cand.idate

for cell state
= update
Forget Input Output
gate gate gate

Long Short-Term Memory (LSTM)

Handling long-distance dependencies through managing memory

* Motivation: Vanilla RNNs struggled with

Updated cell state to help
LSTM ReCU I‘rent Un|t determine new hidden state

long-term dependencies because of g T et Unt e
vanishing/exploding gradients during R, T
training. .

ht—l T T IOTE SRS S CTr CETE : t

Long Short-Term Memory (LSTM)

Handling long-distance dependencies through managing memory

* Motivation: Vanilla RNNs struggled with
long-term dependencies because of

vanishing/exploding gradients during
training.

o e e e o w

L L L L L e e B L] L

Cell state

* Usefulness: LSTMs use gated cells to PNIF SV SIS
selectively remember or forget information, LI L 1k 4 1h 210 AW -
t—1 : P 5 - E :

allowing stable learning over long
seqguences—powering early
breakthroughs in speech recognition,

translation, and text generation. = -~ iy

~Sm-m--- LR e SRS A R

Transformers

Global information access

Output probabilities

*

Softmax

1

Linear

Decoder

Add & Norm

MLPs

Encoder

A

Add & Norm

s

Multi-head
Attention

J

A

.
[Positional encoding]—»E}

*

[Embeddings]

Input sequence

\

Add & Norm

|

MLPs

N

'\

-

~

Add & Norm

Multi-head
Attention

~

J

A

Add & Norm
1

-

[Masked Multi-head |

Attention

<—

J

A

[Positional encoding]——PEB

[

Embeddings

Target sequence

]

Transformers

Global information access

 Motivation: Even LSTMs process
seqguences step-by-step, limiting
parallelization and global context
access.

Output probabilities

f

Softmax

1

Linear

Decoder

Encoder

\.

: Add & Norm

MLPs

A

: Add & Norm

[Multi-head

Attention

A

{ Positional encoding]_>€9

*

[Embeddings]

Input sequence

\.

Add & Norm

—

]

MLPs

'\

Add & Norm

Multi-head
Attention

A

Add & Norm
1

[Masked Multi-head |

Attention

A

[Positional encoding]—»65

[

Embeddings

)

Target sequence

Transformers

Global information access

 Motivation: Even LSTMs process
seqguences step-by-step, limiting
parallelization and global context
access.

 Usefulness: Transformers replace
recurrence with self-attention,
letting the model directly relate
every token to every other—
making large-scale training efficient
and forming the foundation of
modern large language models.

Output probabilities

f

Softmax

1

Linear

Decoder

-
: Add & Norm
MLPs

Encoder 7y
~ Add & Norm |
[Multi-head

Attention
A
.
[Positional encoding]_>€9

*

[Embeddings]

Input sequence

Add & Norm

-

MLPs

'\

Add & Norm

Multi-head
Attention

A

Add & Norm
1

([Masked Multi-head |

Attention

A

.
[Positional encoding]—»E}

[

Embeddings

)

Target sequence

Next Time (after fall break):
Tom McCoy presenting on LLMs

Thank you for listening!

Slides are partially adapted from
Bob Frank (left) and Tom McCoy (right)

AR ¥ ¥ v g] 4 d . 1118
qan A aARs ' R SARS 1 A\ %
3 N a - R - 3 A \
v : et 1 't PR RNY \
o ‘TR AaaResRRAREL . ! N TRRLRY
; AERReaaaRBERCSRe BEARERARY
3 - . 8 = 'y " -\’- ¢ o !.‘v"‘
o l‘ - "V,.: . '_" ! " AN 1) 24 !
i 1 8 : !
TR QNN

And their slides are adpated from Jurafsky and Martin: https://web.stanford.edu/~jurafsky/slp3/

https://web.stanford.edu/~jurafsky/slp3/

