Neural Networks

Langauge and Computation I, Fall 2025

$$z = \sum_{i=1}^{n} w_i x_i + b$$
 Sigmoid: $\sigma(z) = \frac{1}{1 + e^{-z}}$ decision(\mathbf{x}) =
$$\begin{cases} 1, & \text{if } \sigma(z) > 0.5 \\ 0, & \text{otherwise} \end{cases}$$

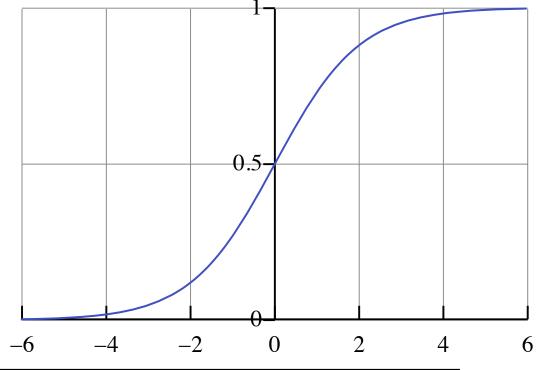
Logistic Regression (from lecture on Sep 18th)

$$z = \sum_{i=1}^{n} w_i x_i + b$$
 Sigmoid: $\sigma(z) = \frac{1}{1 + e^{-z}}$ decision(\mathbf{x}) =
$$\begin{cases} 1, & \text{if } \sigma(z) > 0.5 \\ 0, & \text{otherwise} \end{cases}$$

 Logistic Regression: learning to make a binary decision / classification based on a set of input features.

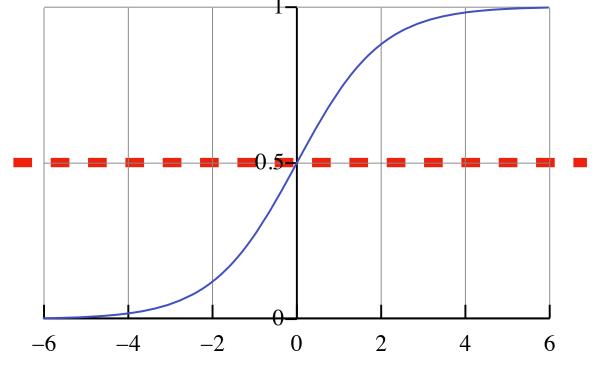
$$z = \sum_{i=1}^{n} w_i x_i + b$$
 Sigmoid: $\sigma(z) = \frac{1}{1 + e^{-z}}$ decision(\mathbf{x}) =
$$\begin{cases} 1, & \text{if } \sigma(z) > 0.5 \\ 0, & \text{otherwise} \end{cases}$$

- Logistic Regression: learning to make a binary decision / classification based on a set of input features.
 - Given a set of input features x_i , learn a set of weight w_i and a bias term b;



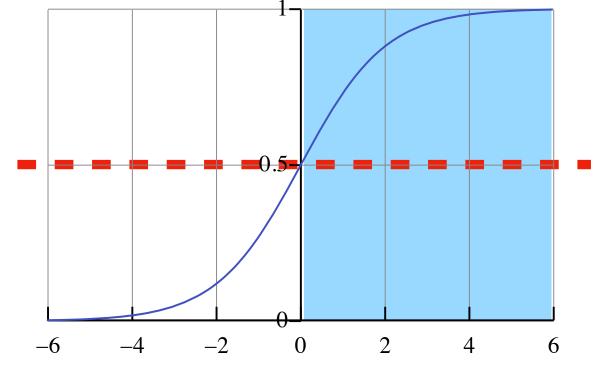
$$z = \sum_{i=1}^{n} w_i x_i + b$$
 Sigmoid: $\sigma(z) = \frac{1}{1 + e^{-z}}$ decision(\mathbf{x}) =
$$\begin{cases} 1, & \text{if } \sigma(z) > 0.5 \\ 0, & \text{otherwise} \end{cases}$$

- Logistic Regression: learning to make a binary decision / classification based on a set of input features.
 - Given a set of input features x_i , learn a set of weight w_i and a bias term b;
 - Transform the weighted sum z into range [0, 1] through Sigmoid function;



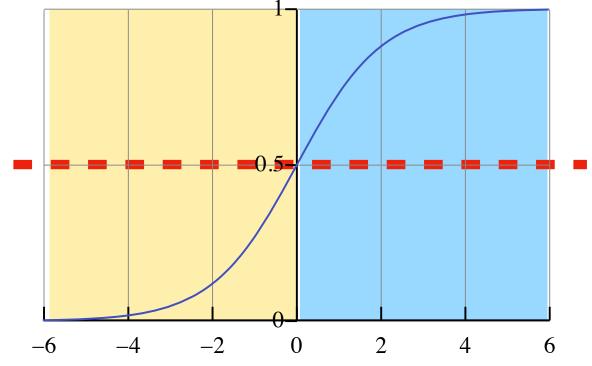
$$z = \sum_{i=1}^{n} w_i x_i + b$$
 Sigmoid: $\sigma(z) = \frac{1}{1 + e^{-z}}$ decision(x) =
$$\begin{cases} 1, & \text{if } \sigma(z) > 0.5 \\ 0, & \text{otherwise} \end{cases}$$

- Logistic Regression: learning to make a binary decision / classification based on a set of input features.
 - Given a set of input features x_i , learn a set of weight w_i and a bias term b;
 - Transform the weighted sum z into range [0, 1] through Sigmoid function;
 - Classification: use $\sigma(z) = 0.5$ as the decision boundary.



$$z = \sum_{i=1}^{n} w_i x_i + b$$
 Sigmoid: $\sigma(z) = \frac{1}{1 + e^{-z}}$ decision(x) =
$$\begin{cases} 1, & \text{if } \sigma(z) > 0.5 \\ 0, & \text{otherwise} \end{cases}$$

- Logistic Regression: learning to make a binary decision / classification based on a set of input features.
 - Given a set of input features x_i , learn a set of weight w_i and a bias term b;
 - Transform the weighted sum z into range [0, 1] through Sigmoid function;
 - Classification: use $\sigma(z) = 0.5$ as the decision boundary.



$$z = \sum_{i=1}^{n} w_i x_i + b$$
 Sigmoid: $\sigma(z) = \frac{1}{1 + e^{-z}}$ decision(\mathbf{x}) =
$$\begin{cases} 1, & \text{if } \sigma(z) > 0.5 \\ 0, & \text{otherwise} \end{cases}$$

- Logistic Regression: learning to make a binary decision / classification based on a set of input features.
 - Given a set of input features x_i , learn a set of weight w_i and a bias term b;
 - Transform the weighted sum z into range [0, 1] through Sigmoid function;
 - Classification: use $\sigma(z) = 0.5$ as the decision boundary.

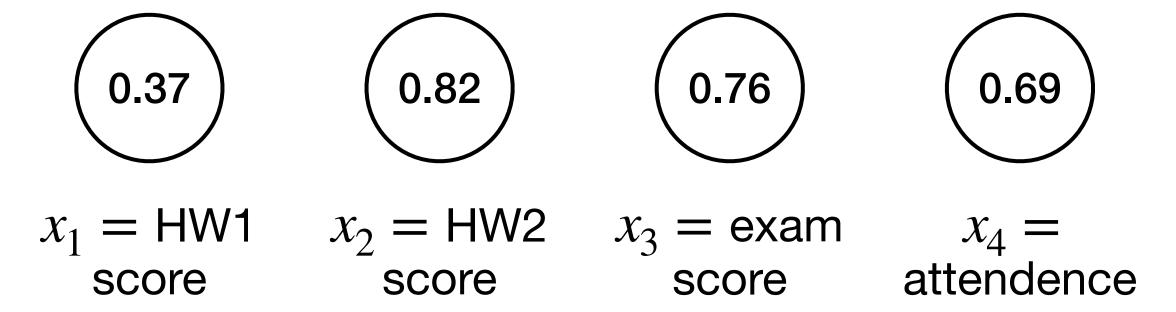
An example on decising whether you pass a class

 Suppose you want a logistic regression model outputing a binary decision of {passing, failing} a class.

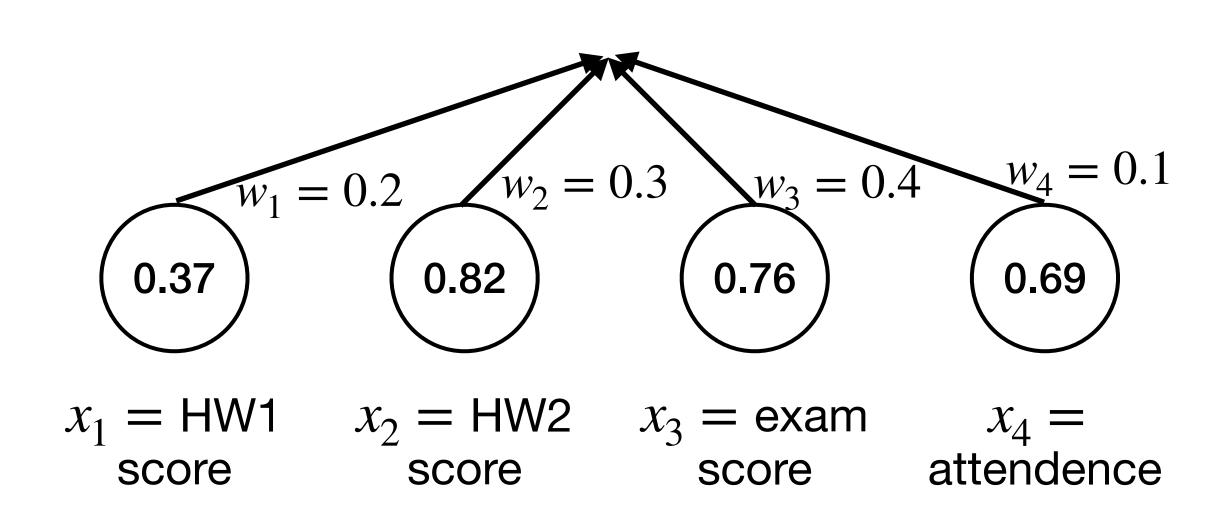
- Suppose you want a logistic regression model outputing a binary decision of {passing, failing} a class.
- Features available:
 - HW 1 (weight = 20%)
 - HW 2 (weight = 30%)
 - Exam (weight = 40%)
 - Attendence (weight = 10%)

- Suppose you want a logistic regression model outputing a binary decision of {passing, failing} a class.
- Features available:
 - HW 1 (weight = 20%)
 - HW 2 (weight = 30%)
 - Exam (weight = 40%)
 - Attendence (weight = 10%)
- Pass if final grade > 60%.

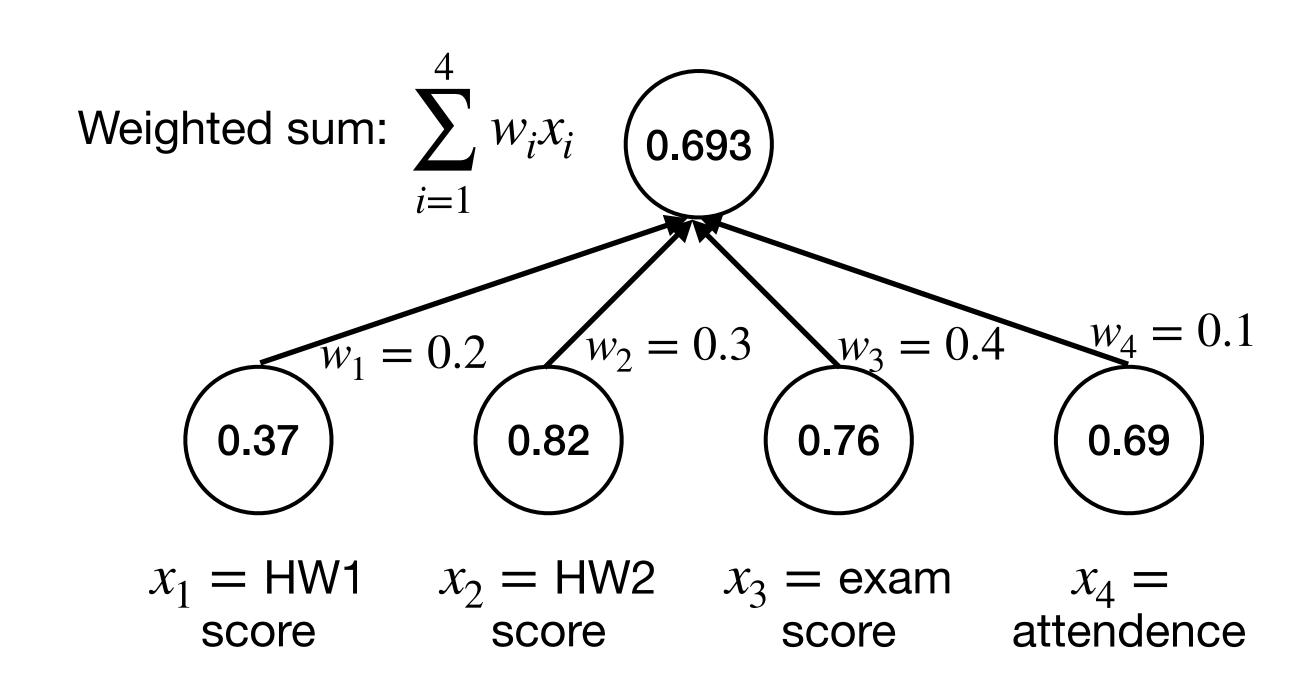
- Suppose you want a logistic regression model outputing a binary decision of {passing, failing} a class.
- Features available:
 - HW 1 (weight = 20%)
 - HW 2 (weight = 30%)
 - Exam (weight = 40%)
 - Attendence (weight = 10%)
- Pass if final grade > 60%.



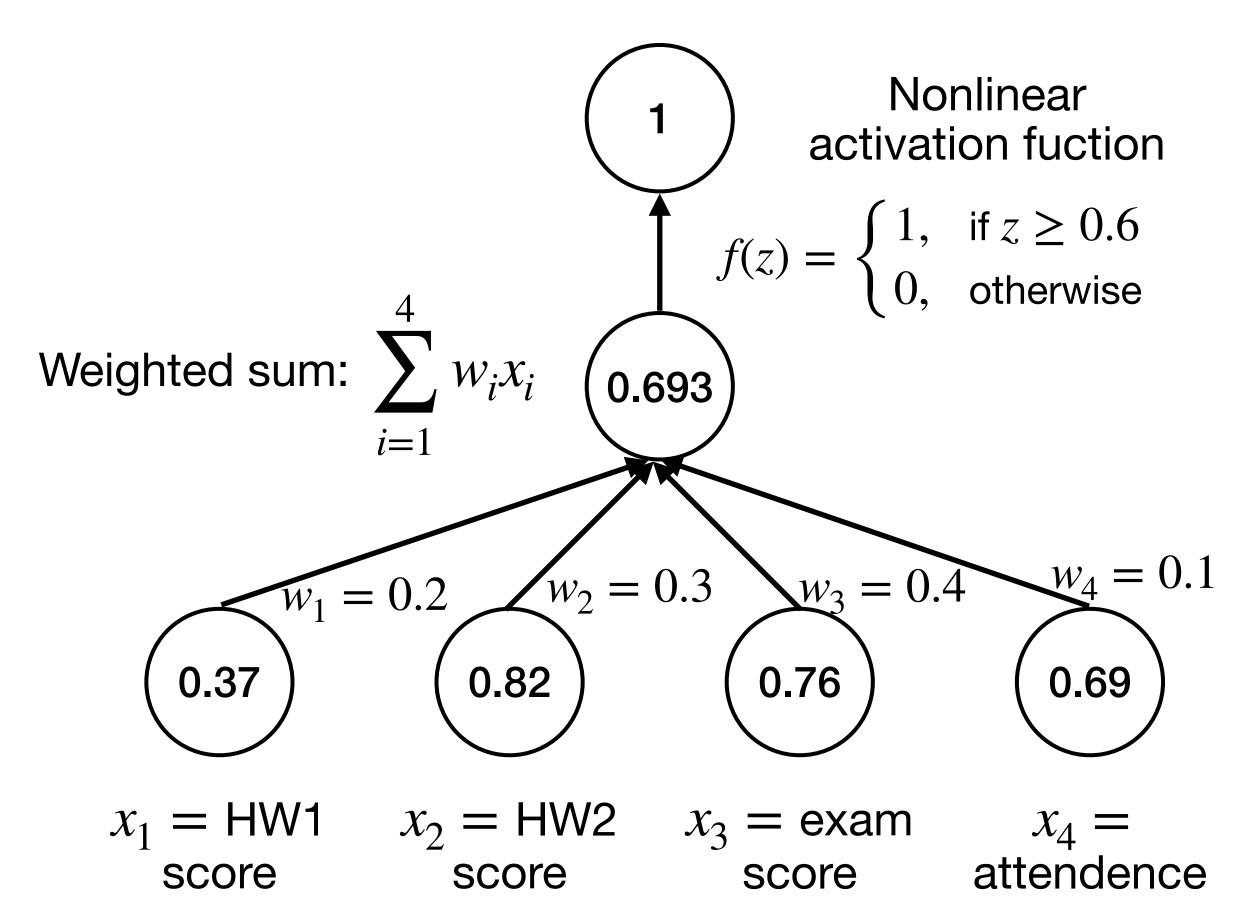
- Suppose you want a logistic regression model outputing a binary decision of {passing, failing} a class.
- Features available:
 - HW 1 (weight = 20%)
 - HW 2 (weight = 30%)
 - Exam (weight = 40%)
 - Attendence (weight = 10%)
- Pass if final grade > 60%.

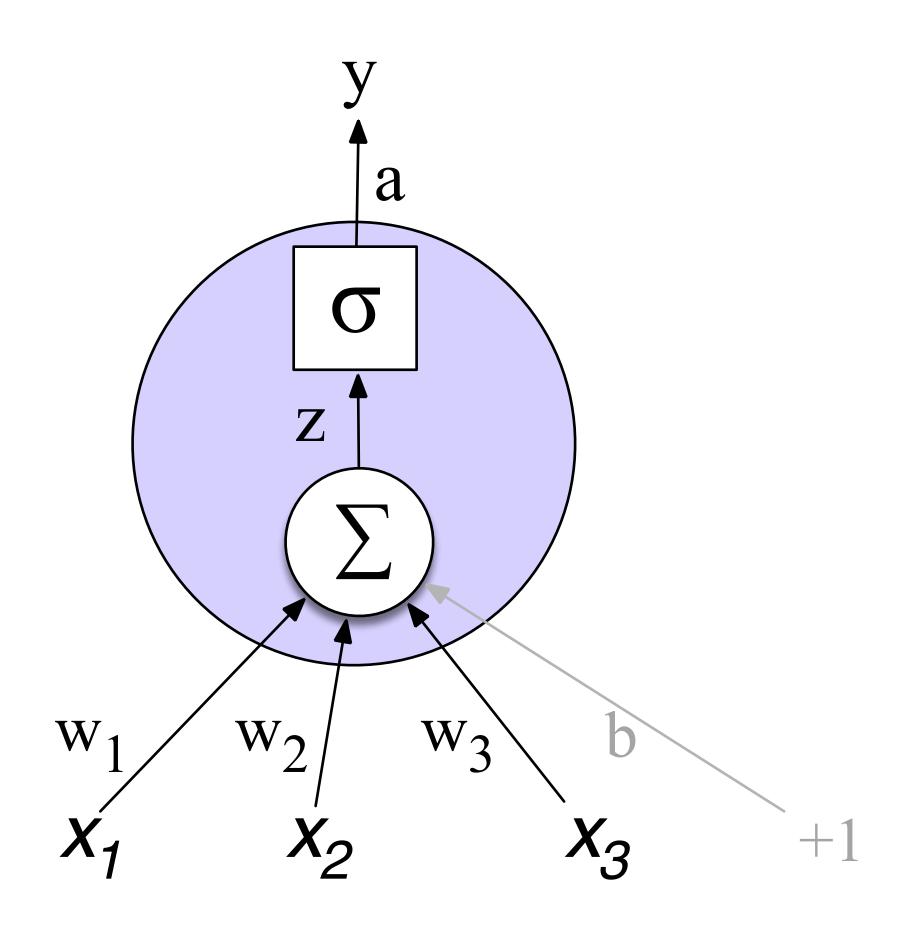


- Suppose you want a logistic regression model outputing a binary decision of {passing, failing} a class.
- Features available:
 - HW 1 (weight = 20%)
 - HW 2 (weight = 30%)
 - Exam (weight = 40%)
 - Attendence (weight = 10%)
- Pass if final grade > 60%.



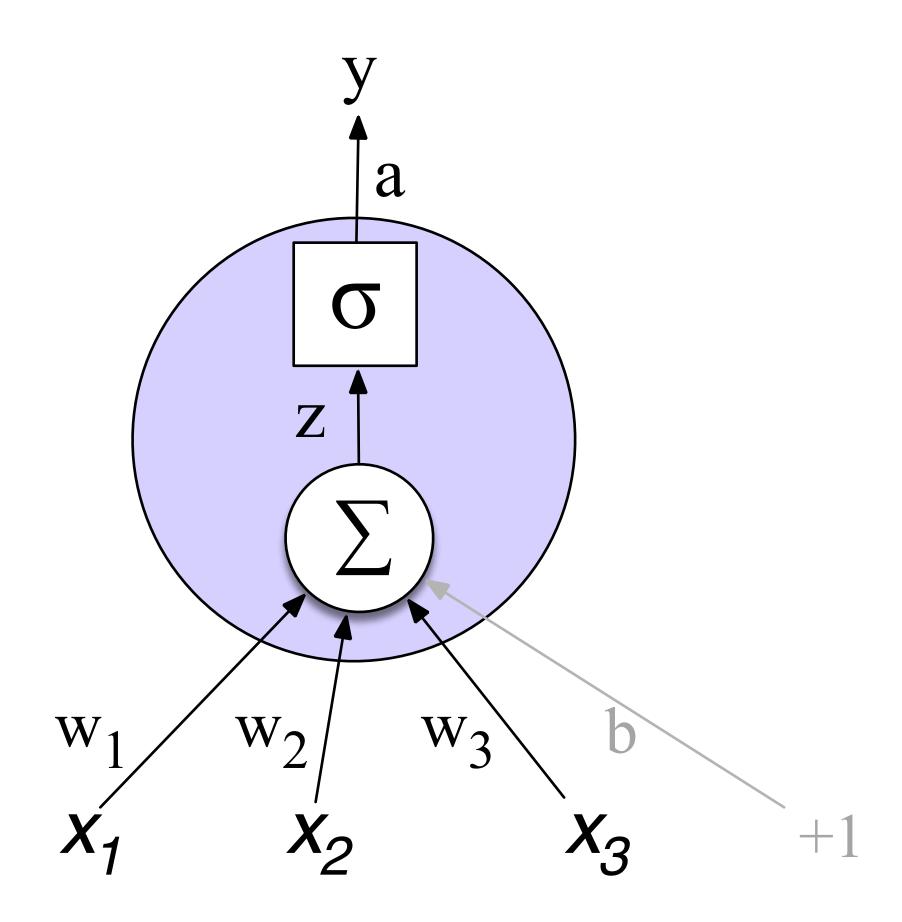
- Suppose you want a logistic regression model outputing a binary decision of {passing, failing} a class.
- Features available:
 - HW 1 (weight = 20%)
 - HW 2 (weight = 30%)
 - Exam (weight = 40%)
 - Attendence (weight = 10%)
- Pass if final grade > 60%.



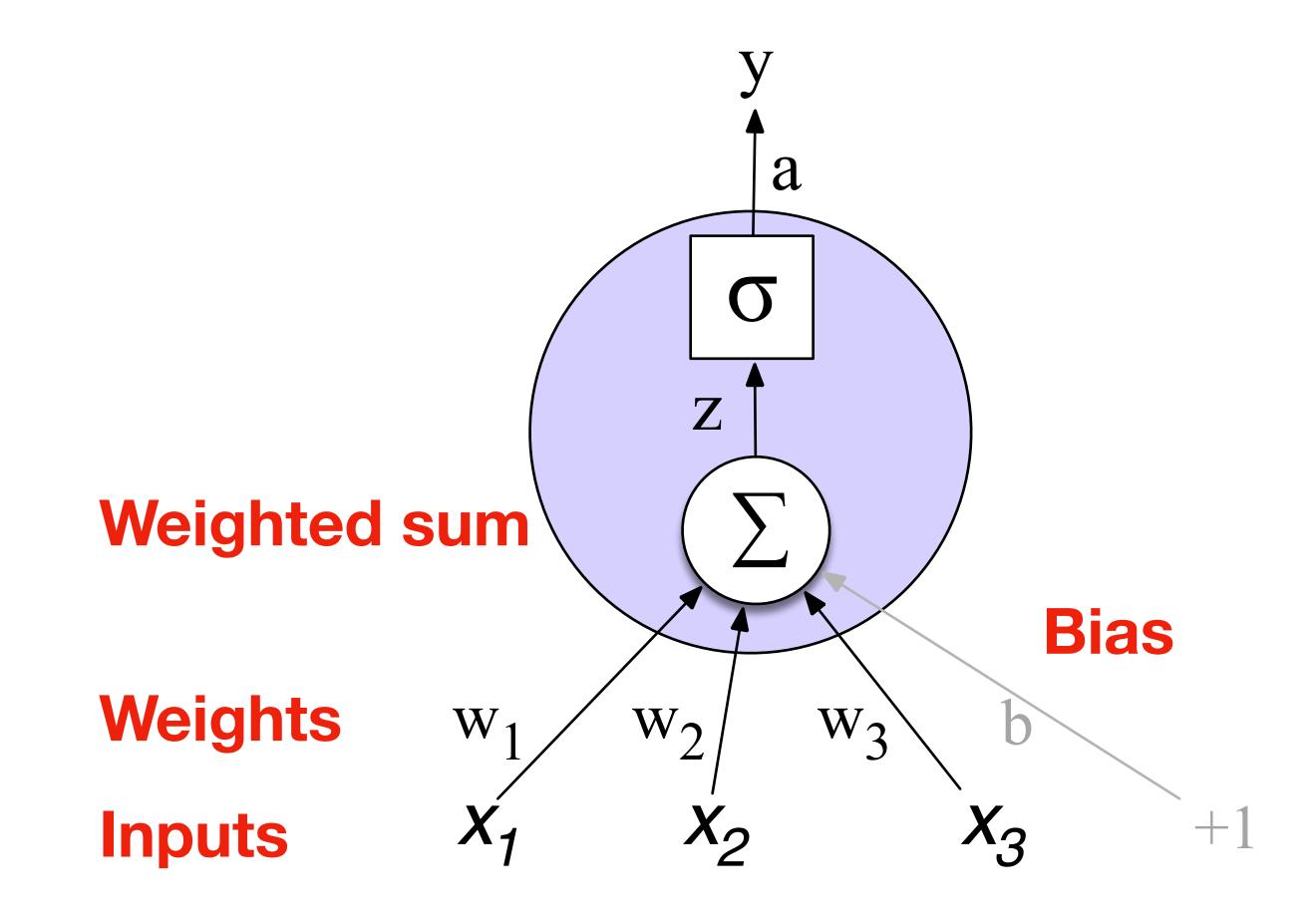


a.k.a. Perceptron

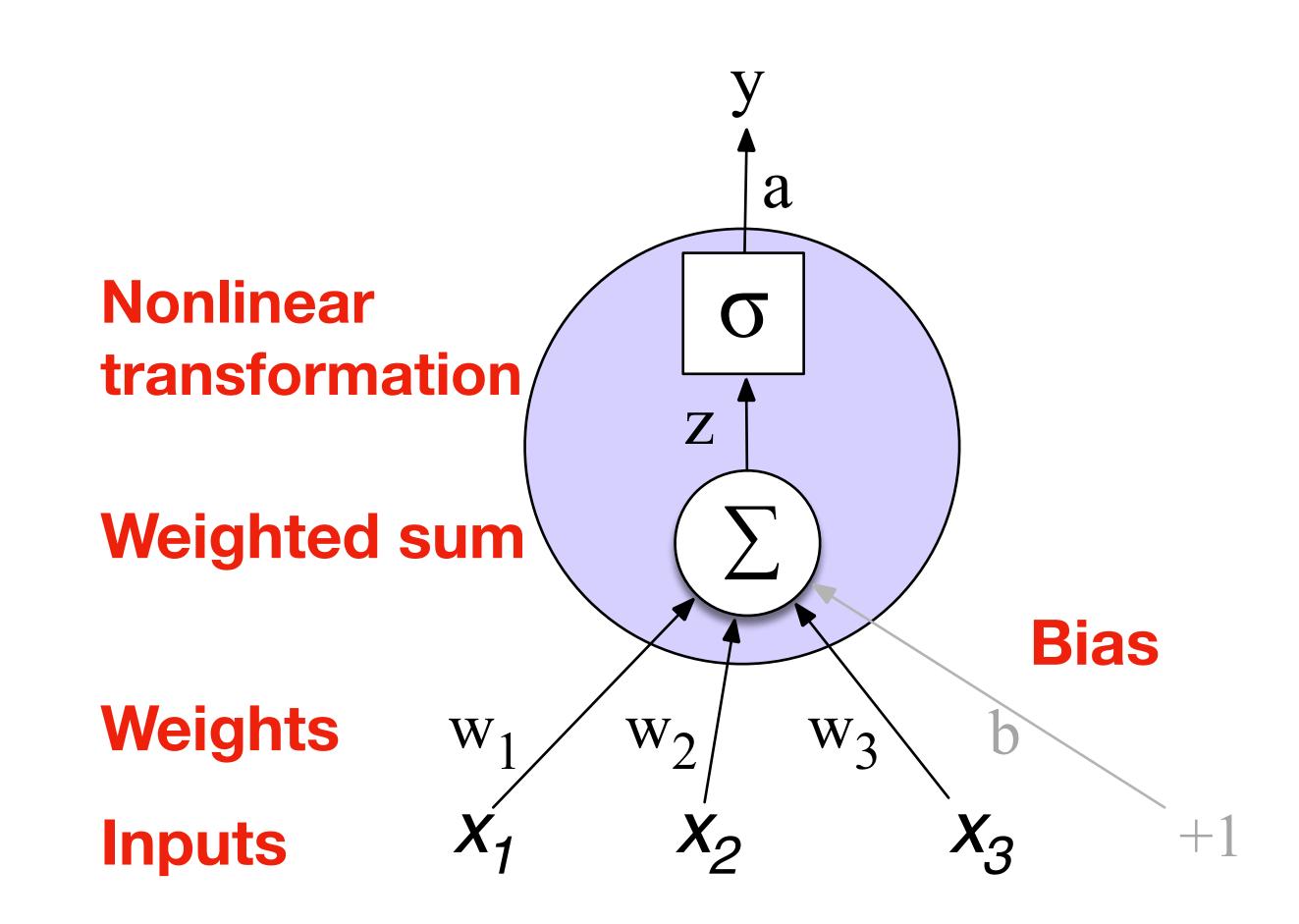
 A perceptron is the simplest type of artificial neuron:



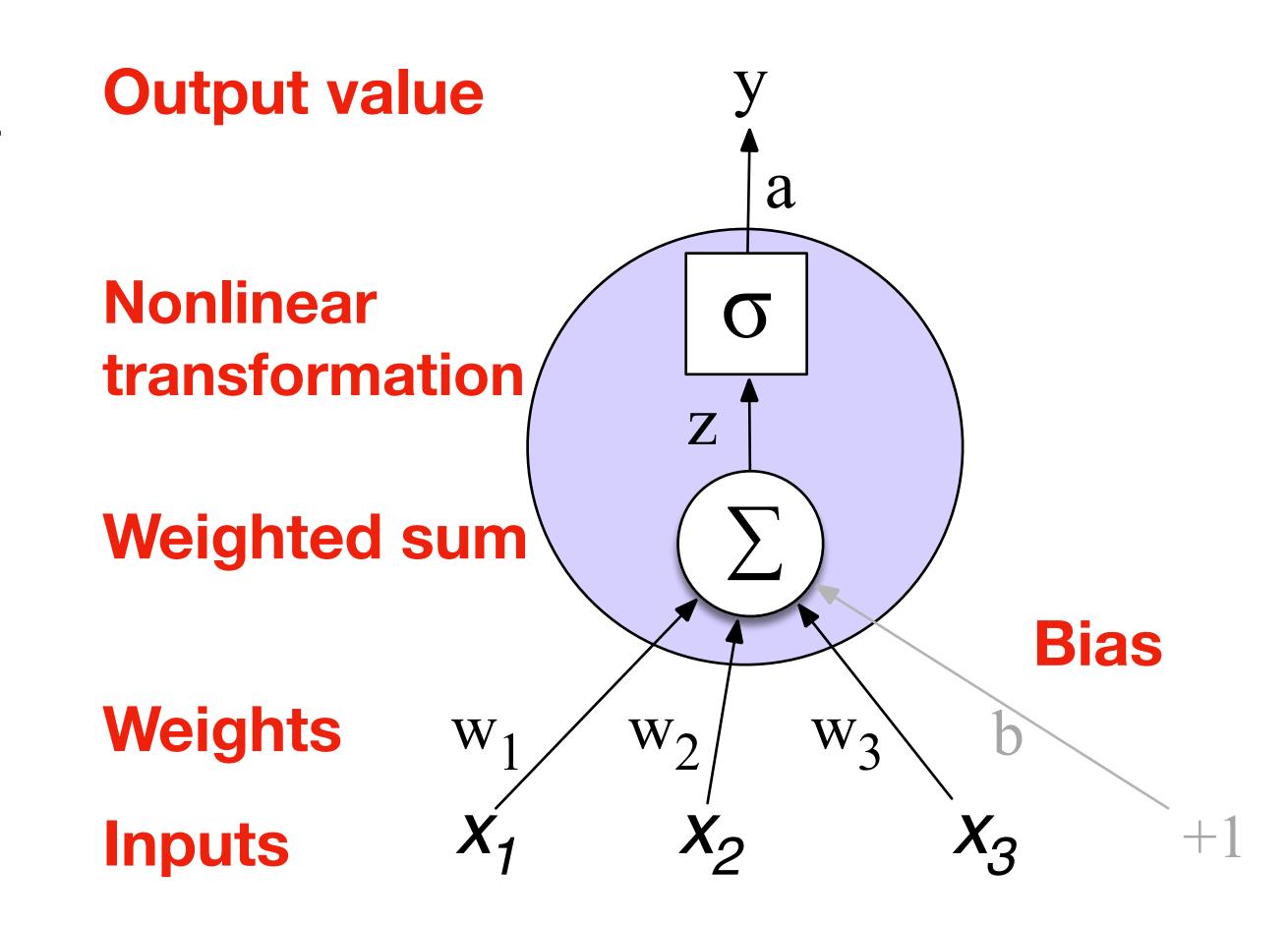
- A perceptron is the simplest type of artificial neuron:
 - * It is a linear classifier that computes a weighted sums of its inputs;



- A perceptron is the simplest type of artificial neuron:
 - * It is a linear classifier that computes a weighted sums of its inputs;
 - * It then applies a (nonlinear) activation function deciding whether it activates;



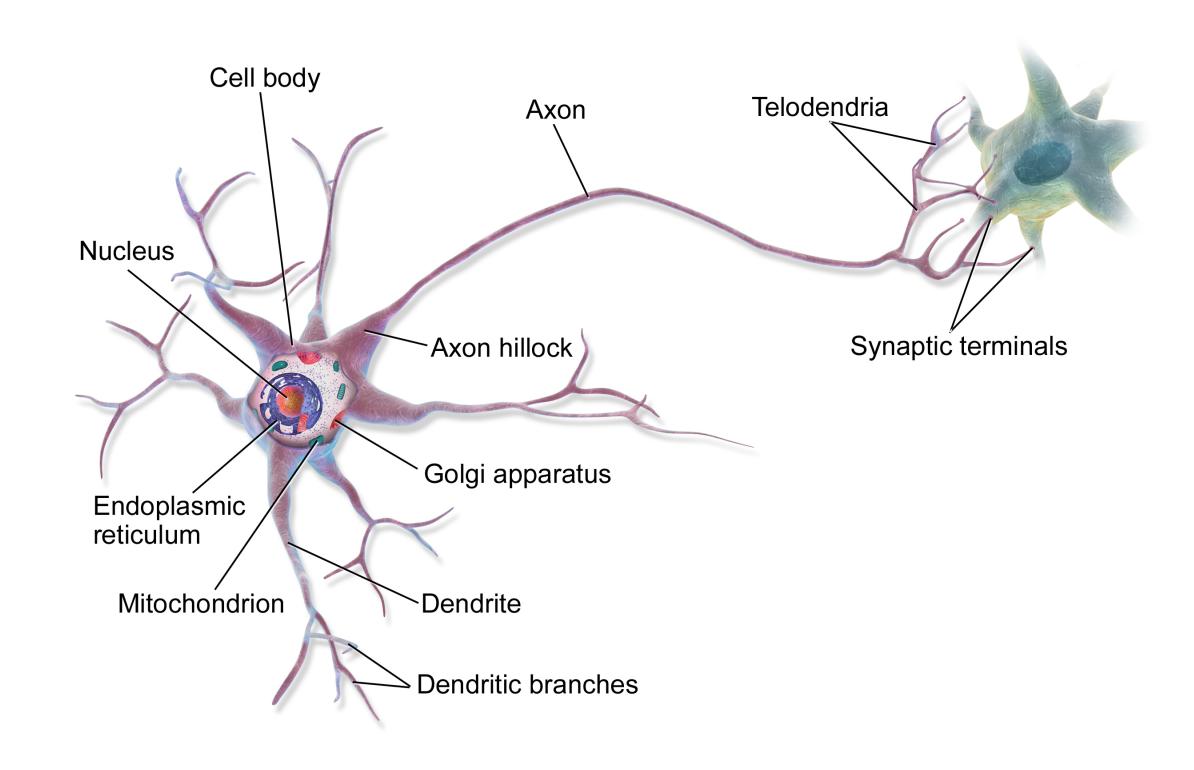
- A perceptron is the simplest type of artificial neuron:
 - * It is a linear classifier that computes a weighted sums of its inputs;
 - * It then applies a (nonlinear) activation function deciding whether it activates;
 - * And outputs a binary decision.



The Perceptron / Artificial Neuron 1958 - 1968

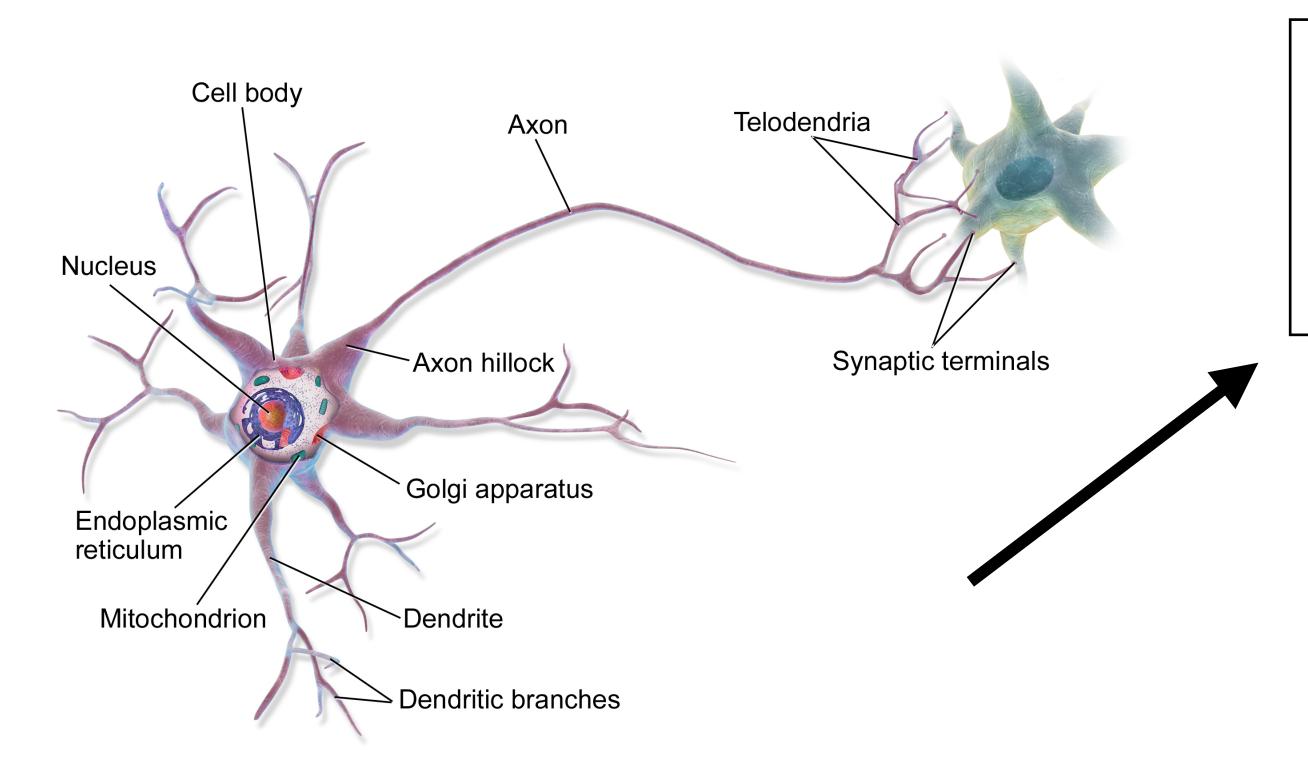
Inspiration: multiple inputs, weighted connections, one firing output.

Inspiration: multiple inputs, weighted connections, one firing output.



(Left) By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830; (Bottom right) Mark I Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-with-his-Mark-I-perceptronleft-and-a-graphical-representation-of_fig2_345813508

Inspiration: multiple inputs, weighted connections, one firing output.



Psychological Review Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN 1

F. ROSENBLATT

Cornell Aeronautical Laboratory

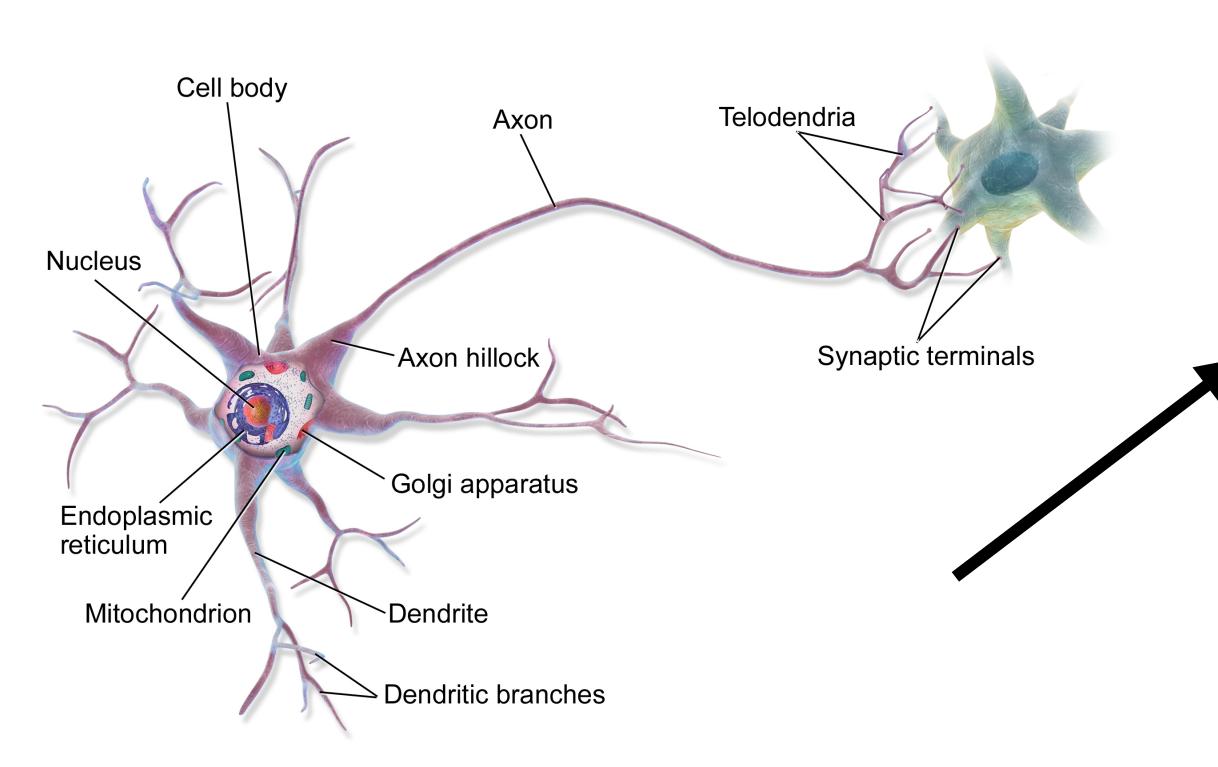
Frank Rosenblatt 1958

(Left) By BruceBlaus - Own work, CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid=28761830;

(Bottom right) Mark I Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-with-his-Mark-I-perceptronleft-and-a-graphical-representation-of_fig2_345813508

Inspiration: multiple inputs, weighted connections, one firing output.



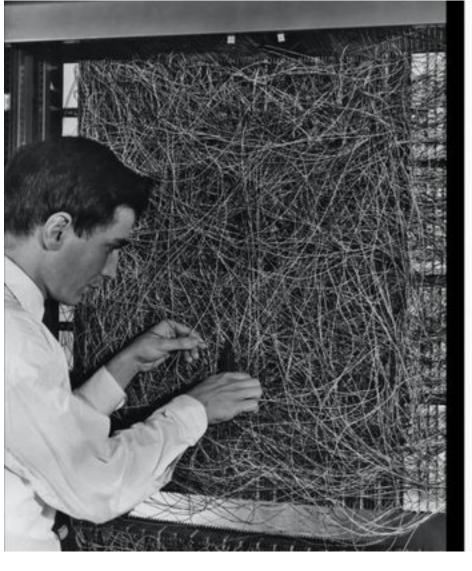
Psychological Review Vol. 65, No. 6, 1958

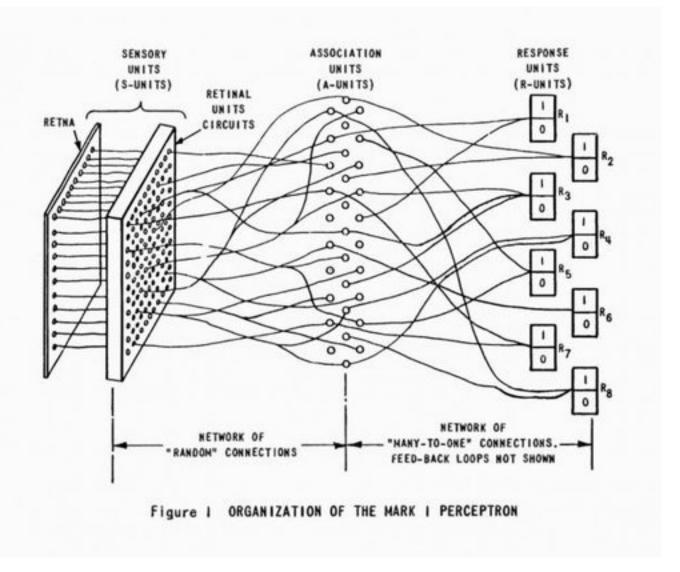
THE PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN ¹

F. ROSENBLATT

Cornell Aeronautical Laboratory

Frank Rosenblatt 1958





(Left) By BruceBlaus - Own work, CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid=28761830;

(Bottom right) Mark I Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-with-his-Mark-I-perceptronleft-and-a-graphical-representation-of_fig2_345813508

$$y = \sigma(\mathbf{w} \cdot \mathbf{x} + b) = \frac{1}{1 + exp(-(\mathbf{w} \cdot \mathbf{x} + b))}$$

$$y = \sigma(\mathbf{w} \cdot \mathbf{x} + b) = \frac{1}{1 + exp(-(\mathbf{w} \cdot \mathbf{x} + b))}$$

- Represent the input feature values and the weights as vectors, x and w;
 - For the grading example, $\mathbf{w} = [w_1, w_2, w_3, w_4] = [0.2, 0.3, 0.5, 0.1];$

$$y = \sigma(\mathbf{w} \cdot \mathbf{x} + b) = \frac{1}{1 + exp(-(\mathbf{w} \cdot \mathbf{x} + b))}$$

- Represent the input feature values and the weights as vectors, x and w;
 - For the grading example, $\mathbf{w} = [w_1, w_2, w_3, w_4] = [0.2, 0.3, 0.5, 0.1];$
- Therefore, $\sum_{i=1}^{n} w_i x_i = \mathbf{w} \cdot \mathbf{x}$, where \cdot represents dot product (element-wise product between two vectors of the same size).

$$y = \sigma(\mathbf{w} \cdot \mathbf{x} + b) = \frac{1}{1 + exp(-(\mathbf{w} \cdot \mathbf{x} + b))}$$

- Represent the input feature values and the weights as vectors, x and w;
 - For the grading example, $\mathbf{w} = [w_1, w_2, w_3, w_4] = [0.2, 0.3, 0.5, 0.1];$
- Therefore, $\sum_{i=1}^{n} w_i x_i = \mathbf{w} \cdot \mathbf{x}$, where \cdot represents dot product (element-wise product between two vectors of the same size).
- In practice, we incorporate the bias term into the vector representation, where bias b always gets weight = 1.0;
 - ► This gives us $\mathbf{w} = [w_1, w_2, w_3, w_4, w_b] = [0.2, 0.3, 0.5, 0.1, 1.0]$

Beyond sigmoid

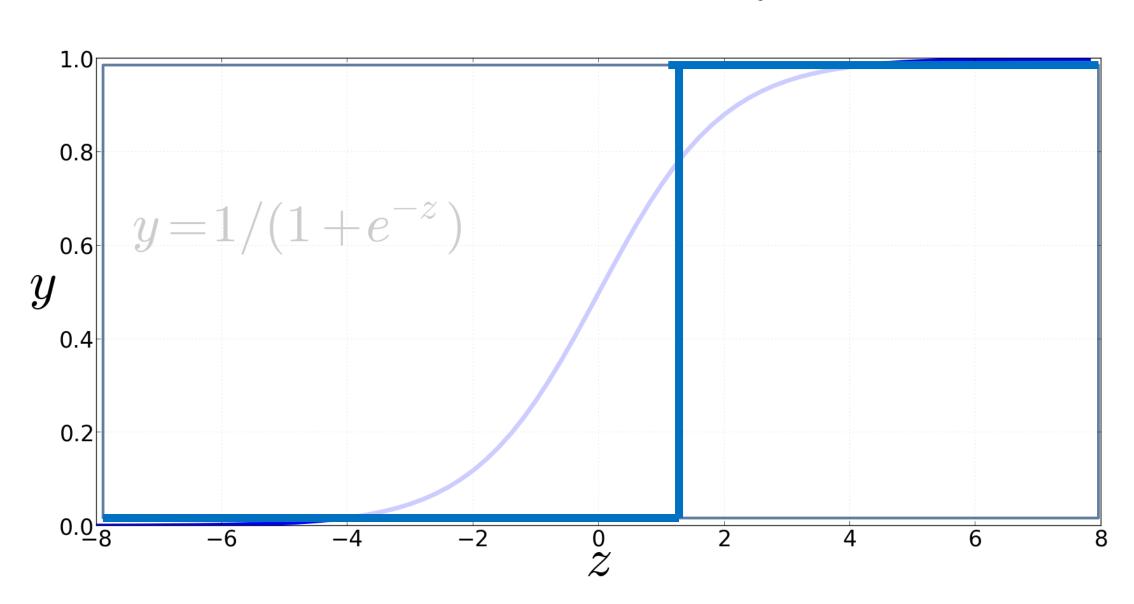
Beyond sigmoid

- In standard logistic regression, we use Sigmoid (σ) as the activation function.
 - We want the map any real value (from weighted sum) to [0, 1] to be interpreted as probability.

Beyond sigmoid

- In standard logistic regression, we use Sigmoid (σ) as the activation function.
 - We want the map any real value (from weighted sum) to [0, 1] to be interpreted as probability.
- In the grading example, we use a step function:

$$f(z) = \begin{cases} 1, & \text{if } z \ge 0.6 \\ 0, & \text{otherwise} \end{cases}$$

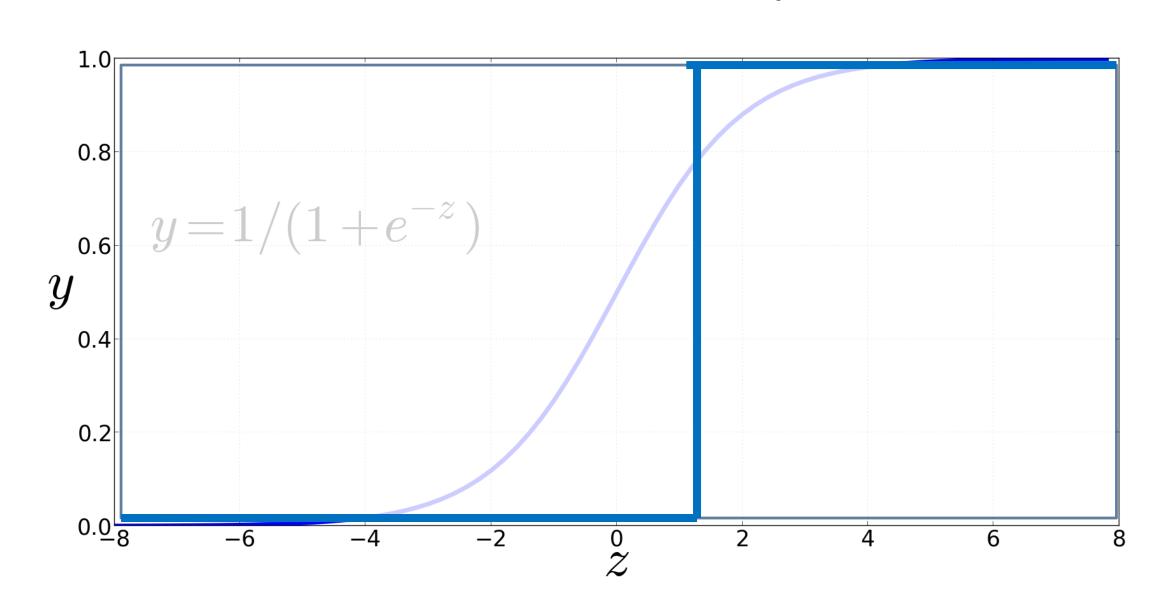


Beyond sigmoid

- In standard logistic regression, we use Sigmoid (σ) as the activation function.
 - ► We want the map *any* real value (from weighted sum) to [0, 1] to be interpreted as probability.
- In the grading example, we use a step function:

 $f(z) = \begin{cases} 1, & \text{if } z \ge 0.6 \\ 0, & \text{otherwise} \end{cases}$

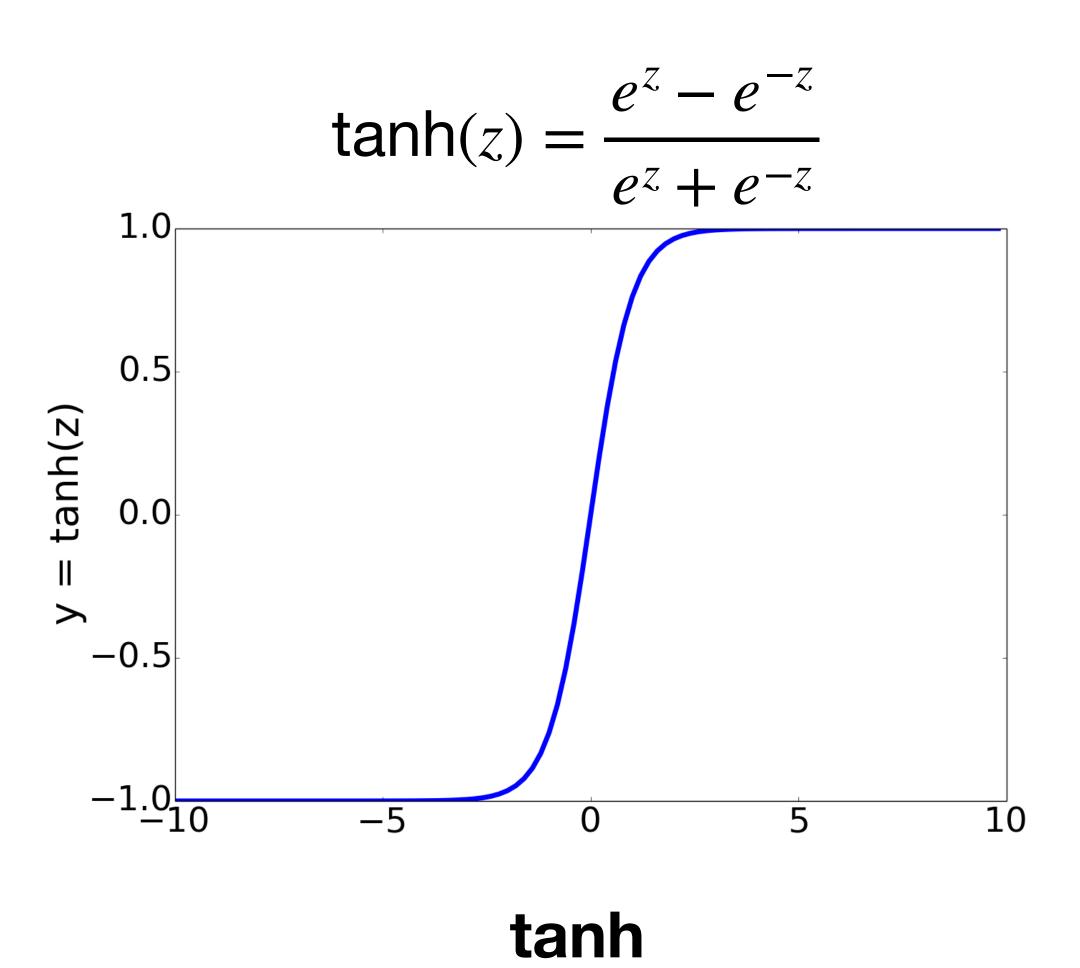
Intuition: nonlinearity enables the model to represent relations beyond linear functions (i.e., cannot be represented by matrix operations)!



^{*} will come back to it later

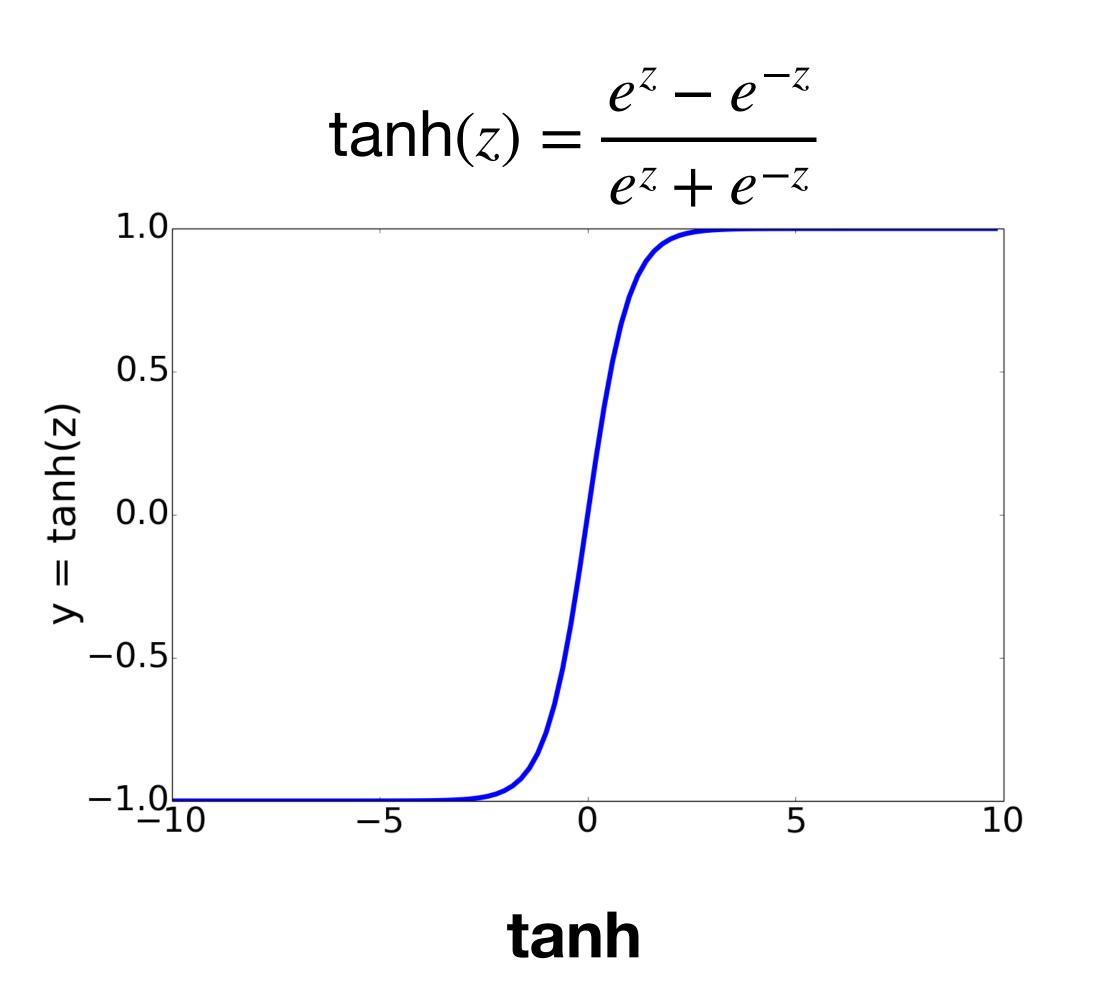
Other Nonlinear Activation Functions

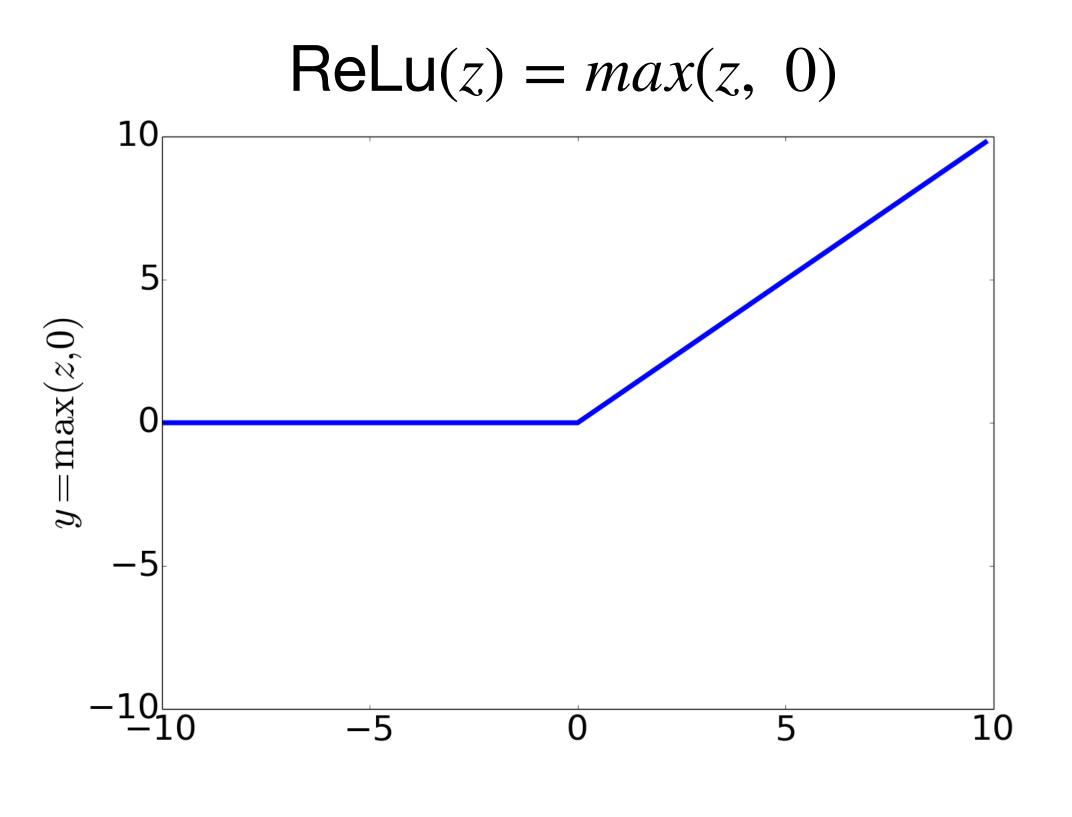
Choose activation functions wisely given your problem setting



Other Nonlinear Activation Functions

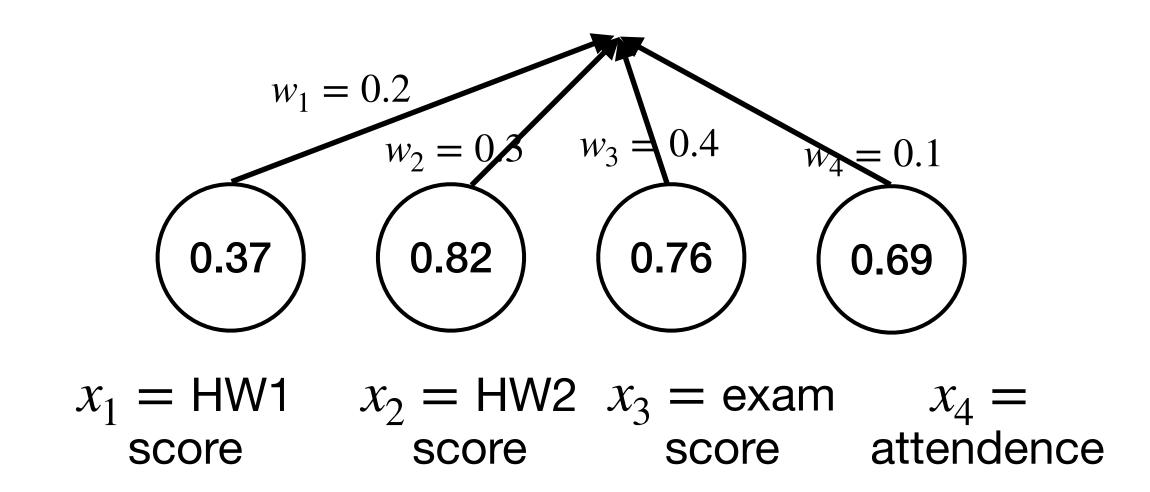
Choose activation functions wisely given your problem setting





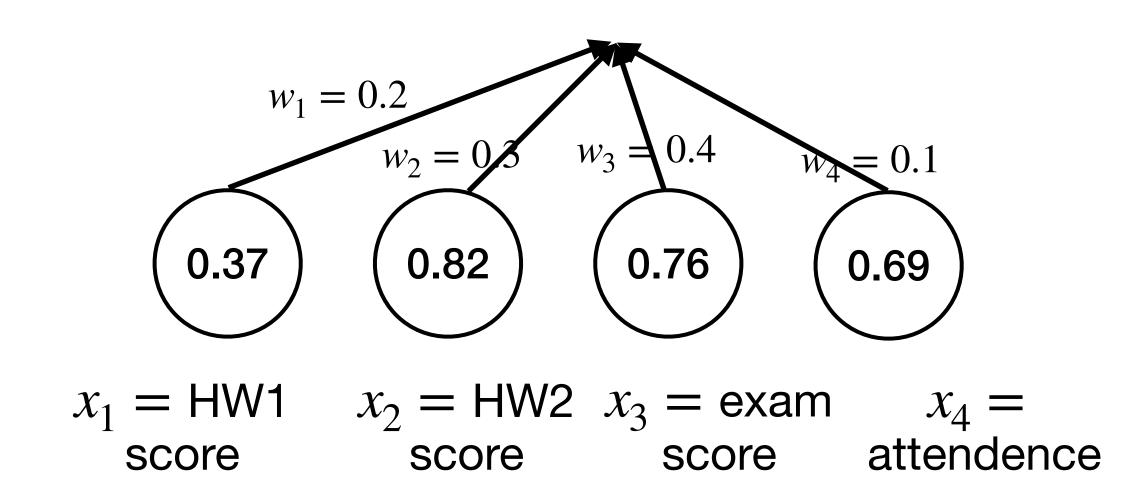
ReLU (Rectified Linear Unit)

Back to the grading example



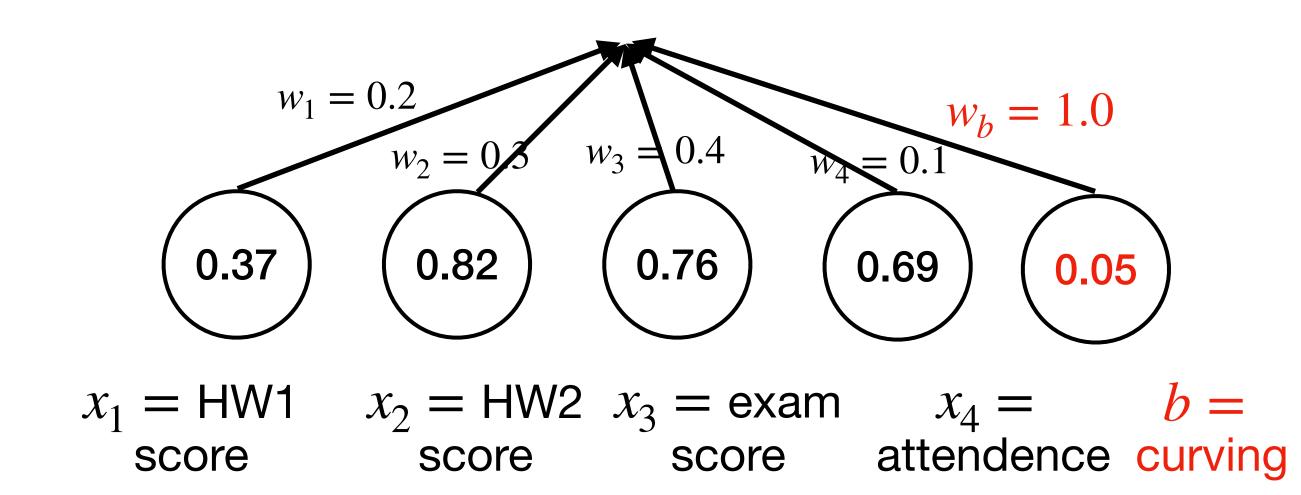
Back to the grading example

 Suppose we applied a curve and adds 5 points (i.e., 0.05%) to the grade.



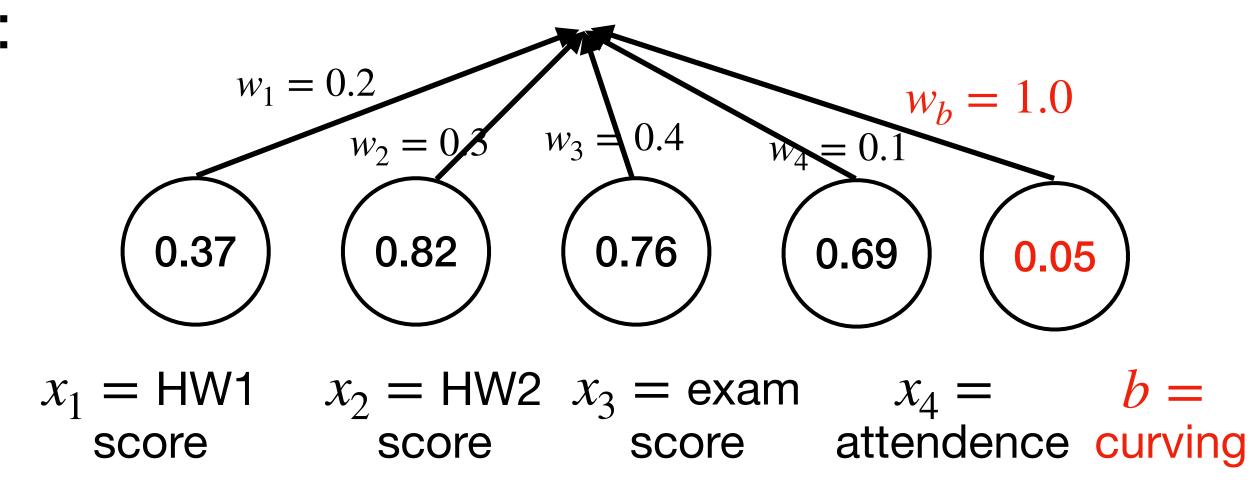
Back to the grading example

 Suppose we applied a curve and adds 5 points (i.e., 0.05%) to the grade.



Back to the grading example

- Suppose we applied a curve and adds 5 points (i.e., 0.05%) to the grade.
- Then, we have vector representations:
 - $\mathbf{w} = [0.2, 0.3, 0.4, 0.1, 1.0];$
 - $\mathbf{b} = [0.37, 0.82, 0.76, 0.69, 0.05];$



Back to the grading example

- Suppose we applied a curve and adds 5 points (i.e., 0.05%) to the grade.
- Then, we have vector representations:

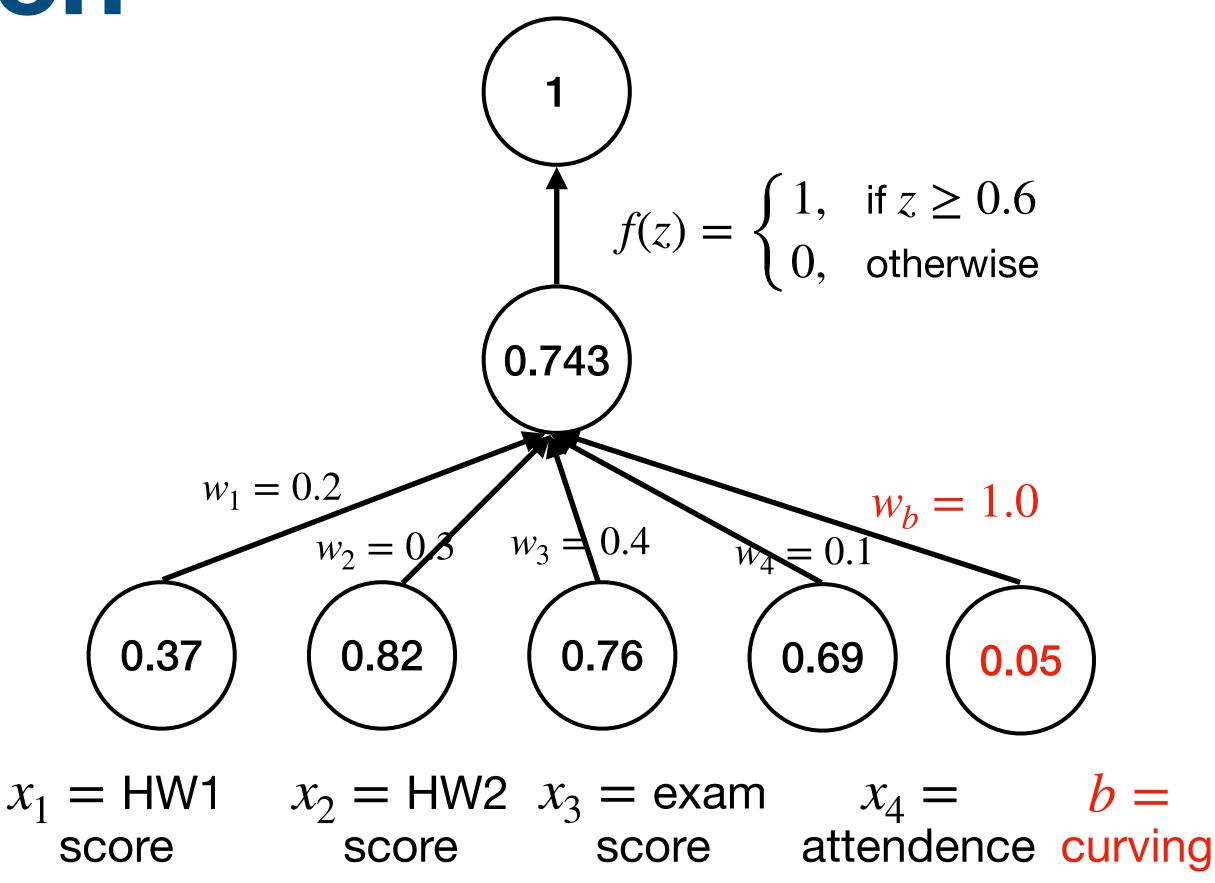
$$\mathbf{w} = [0.2, 0.3, 0.4, 0.1, 1.0];$$

- **b**= [0.37, 0.82, 0.76, 0.69, 0.05];
- Then:

$$y = f(\mathbf{w} \cdot \mathbf{x} + b)$$

$$= f(0.2 \times 0.37 + 0.3 \times 0.82 + 0.4 \times 0.76 + 0.1 \times 0.69 + 1.0 \times 0.05)$$

$$= f(0.743) = Boolean(0.743 \ge 0.6) = 1$$



Wait.... Where do weights come from?

The Perceptron Learning Rule

You need to do error-driven learning in order to "perceive" and "adapt"

$$\mathbf{w} := \mathbf{w} + \eta(\mathbf{y} - \hat{\mathbf{y}})\mathbf{x}$$

The Perceptron Learning Rule

You need to do error-driven learning in order to "perceive" and "adapt"

$$\mathbf{w} := \mathbf{w} + \eta(\mathbf{y} - \hat{\mathbf{y}})\mathbf{x}$$

- Given an input-output pair (\mathbf{x}, y) where \mathbf{x} is a vector and $y \in \{0, 1\}$:
 - $ightharpoonup \hat{y}$ is the **predicted label** from the current set of weights;
 - η is the **learning rate**: how much to adjust each weight given a datapoint.

The Perceptron Learning Rule

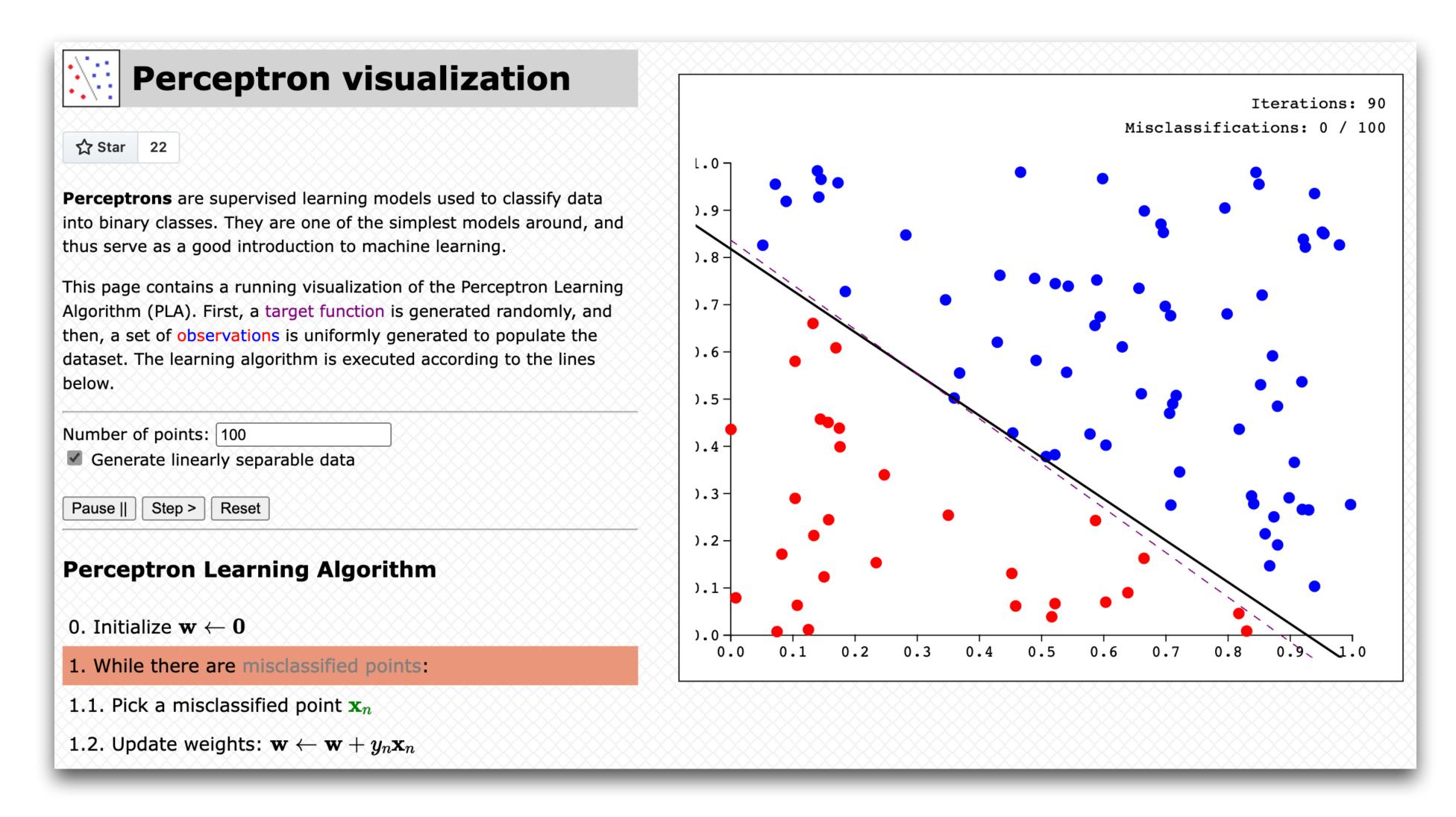
You need to do error-driven learning in order to "perceive" and "adapt"

$$\mathbf{w} := \mathbf{w} + \eta(\mathbf{y} - \hat{\mathbf{y}})\mathbf{x}$$

- Given an input-output pair (\mathbf{x}, y) where \mathbf{x} is a vector and $y \in \{0, 1\}$:
 - \hat{y} is the **predicted label** from the current set of weights;
 - η is the **learning rate**: how much to adjust each weight given a datapoint.
- Intuition (very important!):
 - If I made an error (\hat{y}) differs from y, so that $(y \hat{y}) = \pm 1$, then update each weight w_i with the amount ηx_i towards the correct direction (sign of $y \hat{y}$).
 - Each value of x_i determines, for this example, how much is w_i faulty / responsible for this mis-classification!

A Real-Time Illustration

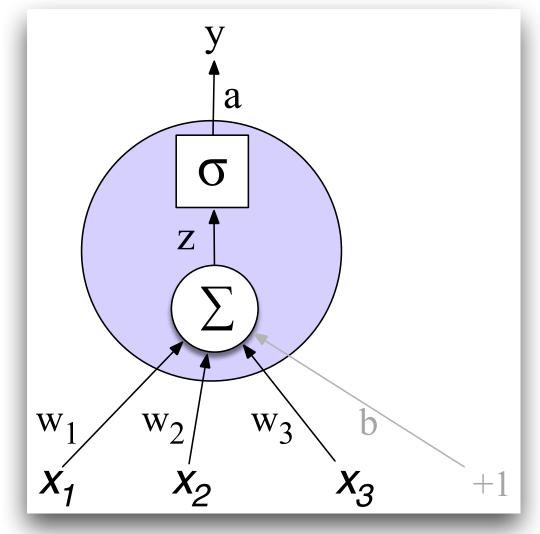
Perceptron is really "perceiving and adapting" — aka learning!



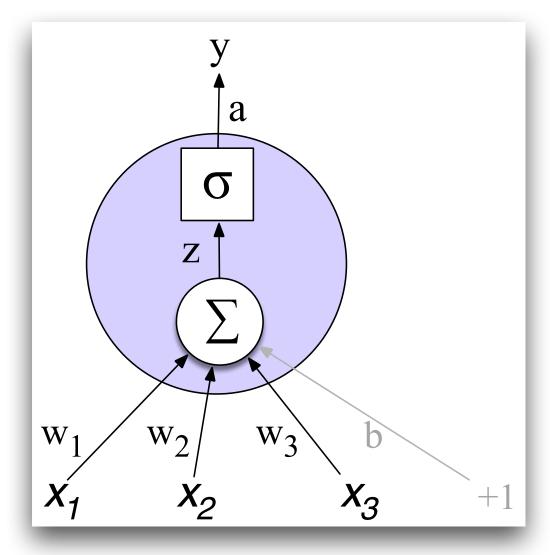
Logistic Regression → Artifical Neuron / Perceptron → Learning

Logistic Regression is discriminative: unlike Naive Bayes, it
doesn't care how x is produced (i.e., not targeting to model the
distribution of x). It focuses on learning the mapping from x to y.

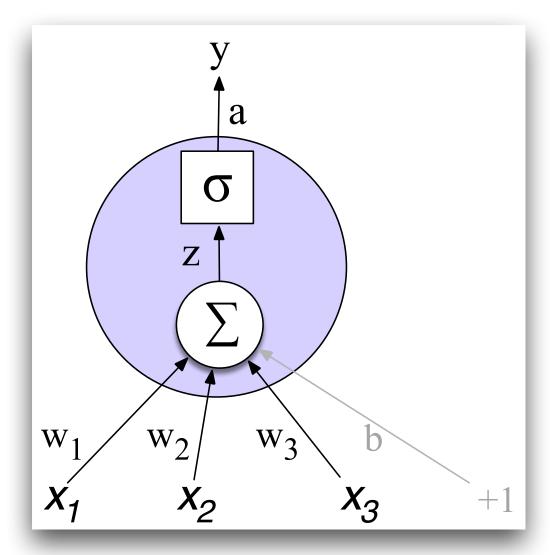
- Logistic Regression is discriminative: unlike Naive Bayes, it doesn't care how \mathbf{x} is produced (i.e., not targeting to model the distribution of \mathbf{x}). It focuses on learning the mapping from \mathbf{x} to y.
- Logistic regressoin is a specific version of Perceptron (an artificial neuron): where the nonlinear function is Sigmoid, and there is only one output node for binary classification.

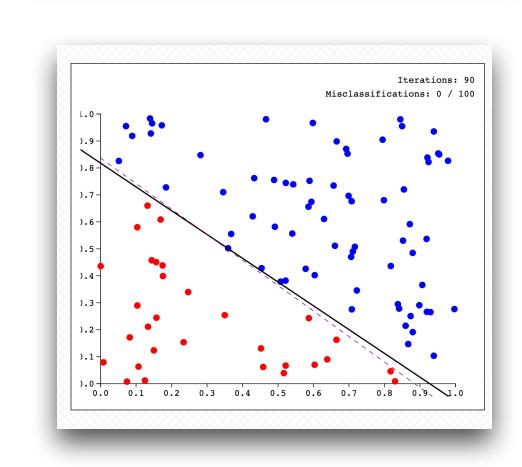


- Logistic Regression is discriminative: unlike Naive Bayes, it doesn't care how **x** is produced (i.e., not targeting to model the distribution of **x**). It focuses on learning the mapping from **x** to **y**.
- Logistic regressoin is a specific version of Perceptron (an artificial neuron): where the nonlinear function is Sigmoid, and there is only one output node for binary classification.
- Perceptron is inspired by brain neurons and was initially invented to model "information detection, storage, and recognition" (Rosenblatt 1958);



- Logistic Regression is discriminative: unlike Naive Bayes, it doesn't care how **x** is produced (i.e., not targeting to model the distribution of **x**). It focuses on learning the mapping from **x** to **y**.
- Logistic regressoin is a specific version of Perceptron (an artificial neuron): where the nonlinear function is Sigmoid, and there is only one output node for binary classification.
- Perceptron is inspired by brain neurons and was initially invented to model "information detection, storage, and recognition" (Rosenblatt 1958);
- Perceptron iteratively learns a linear decision boundary for binary classification — we will come back to this intuition later~





The XOR Problem and The First Al Winter 1969 - 1980~ish

How Expressive is a Perceptron?

[Exercise] Let's try representing logical gates!

• Can a Perceptron compute simple functions of input?

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

• Assume two inputs x_1 and x_2 , use the following activation function:

AND

x1	x2	y
0	0	0
0	1	0
1	0	0
1	1	1

OR

x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	1

How Expressive is a Perceptron?

 $y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$

Sample Answer

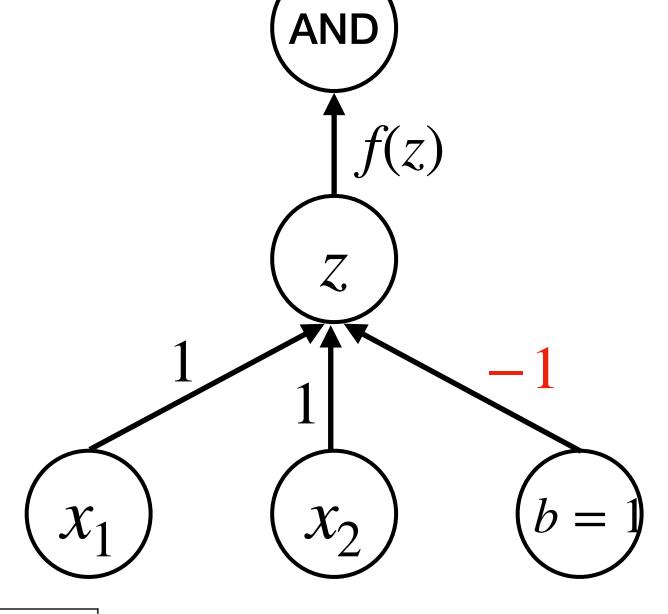
AND

x1	x2	y
0	0	0
0	1	0
1	0	0
1	1	1

 $y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$

How Expressive is a Perceptron?

Sample Answer

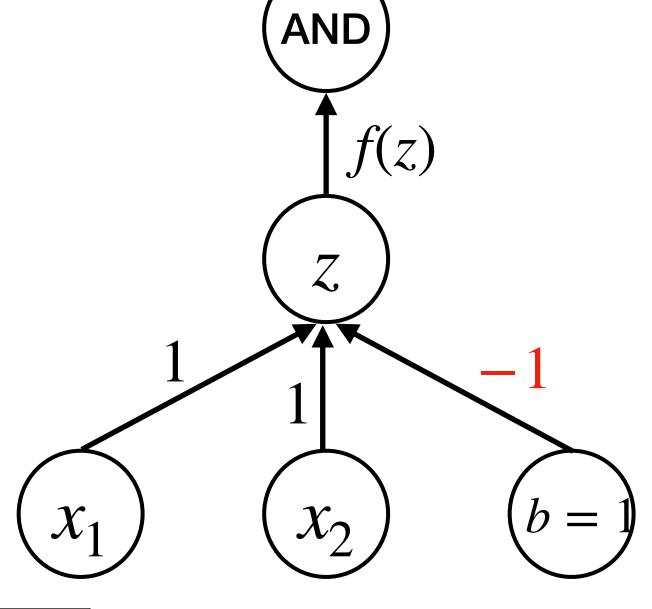


x1	x2	y
0	0	0
0	1	0
1	0	0
1	1	1

How Expressive is a Perceptron?

Sample Answer

AND



OR

	OR	
	$\int_{\mathcal{Z}} f(z)$	
1	1	0
(x_1)	(x_2)	b = 1

 $y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$

x1	x2	y
0	0	0
0	1	0
1	0	0
1	1	1

x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	1

[Exercise] Let's try representing the XOR gate!

- XOR = exclusive OR: x1 OR x2, but not both
- Formally: (x1 OR x2) AND (NOT (x1 AND x2))

[Exercise] Let's try representing the XOR gate!

- XOR = exclusive OR: x1 OR x2, but not both
- Formally: (x1 OR x2) AND (NOT (x1 AND x2))

OR

x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	1

[Exercise] Let's try representing the XOR gate!

- XOR = exclusive OR: x1 OR x2, but not both
- Formally: (x1 OR x2) AND (NOT (x1 AND x2))

OR

x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	1

XOR

x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	0

[Exercise] Let's try representing the XOR gate!

- XOR = exclusive OR: x1 OR x2, but not both
- Formally: (x1 OR x2) AND (NOT (x1 AND x2))

OR

x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	1

XOR

жl	x2	y
0	0	0
0	1	1
1	0	1
1	1	0

Learning decision boundaries

Learning decision boundaries

 Given the current step-wise activation function, our perceptrons define an equation of a line in a 2D space (2D for 2 inputs):

$$w_1x_1 + w_2x_2 + b = 0$$

In standard linear format: $x_2 = (-w_1/w_2)x_1 + (-b)/w_2$

Learning decision boundaries

 Given the current step-wise activation function, our perceptrons define an equation of a line in a 2D space (2D for 2 inputs):

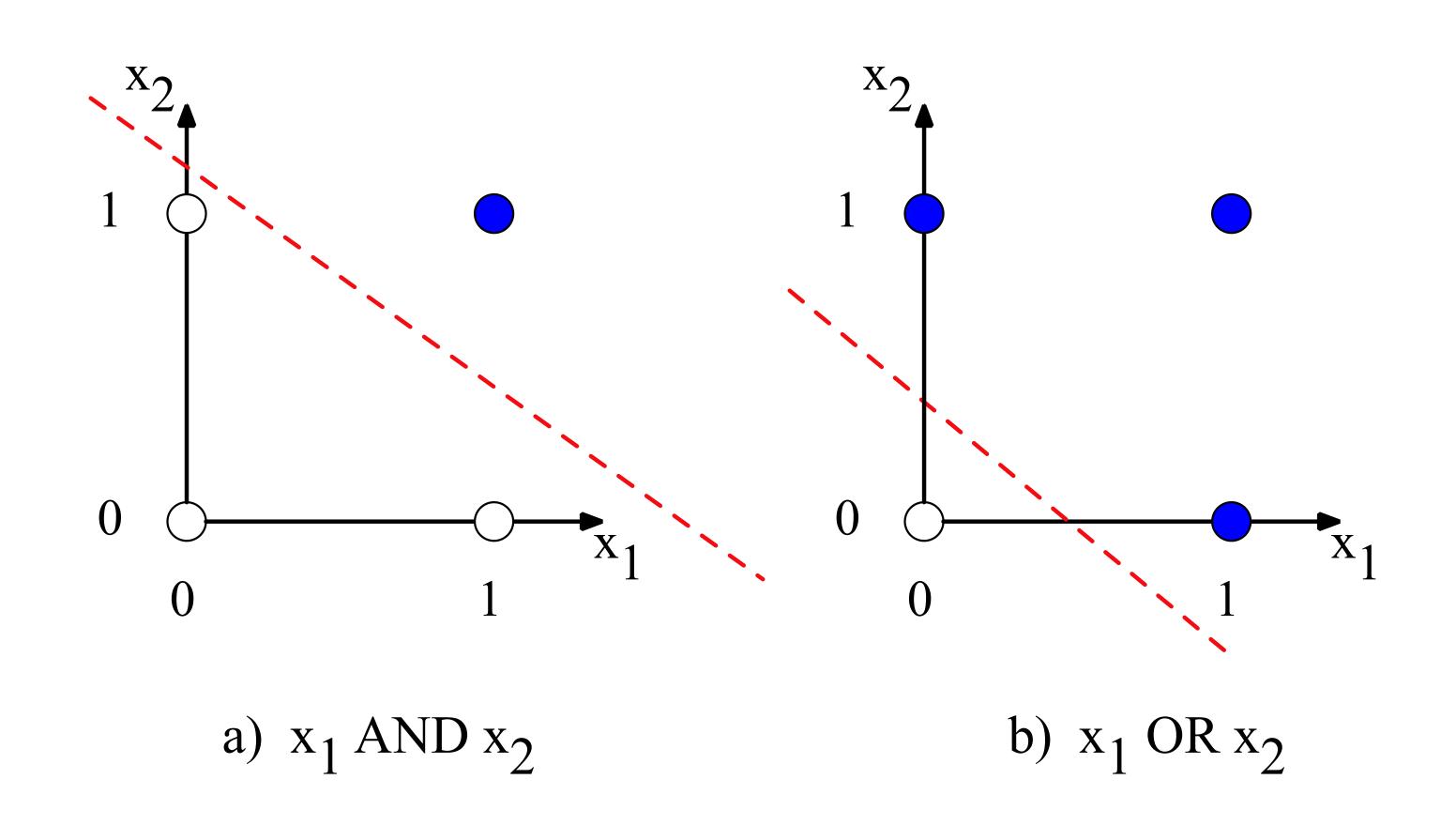
$$w_1x_1 + w_2x_2 + b = 0$$

- In standard linear format: $x_2 = (-w_1/w_2)x_1 + (-b)/w_2$
- In the 2D space we are familiar with, this defines a decision boundary.
 - Output = 0 if the input point is on one side of the line;
 - Output = 1 if the input point is on the other side of the line.

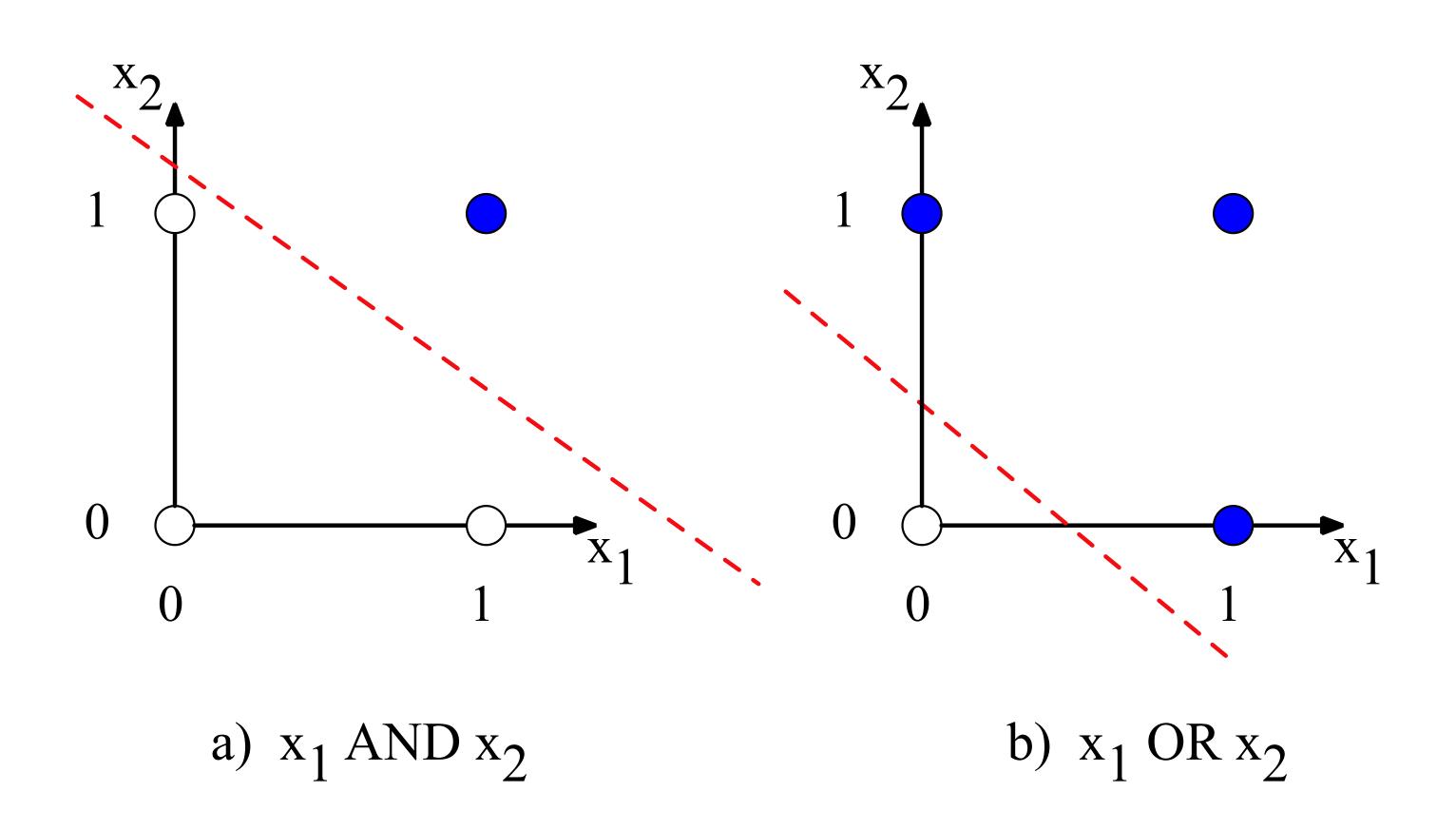
Learning decision boundaries

- Given the current step-wise activation function, our perceptrons define an equation of a line in a 2D space (2D for 2 inputs):
 - $w_1x_1 + w_2x_2 + b = 0$
 - In standard linear format: $x_2 = (-w_1/w_2)x_1 + (-b)/w_2$
- In the 2D space we are familiar with, this defines a decision boundary.
 - Output = 0 if the input point is on one side of the line;
 - Output = 1 if the input point is on the other side of the line.
- A good perceptron should be able to find a decision boundary that perfectly separates the 0 points from the 1 points — linearly separability!

Visualizing the decision boundaries for AND and OR

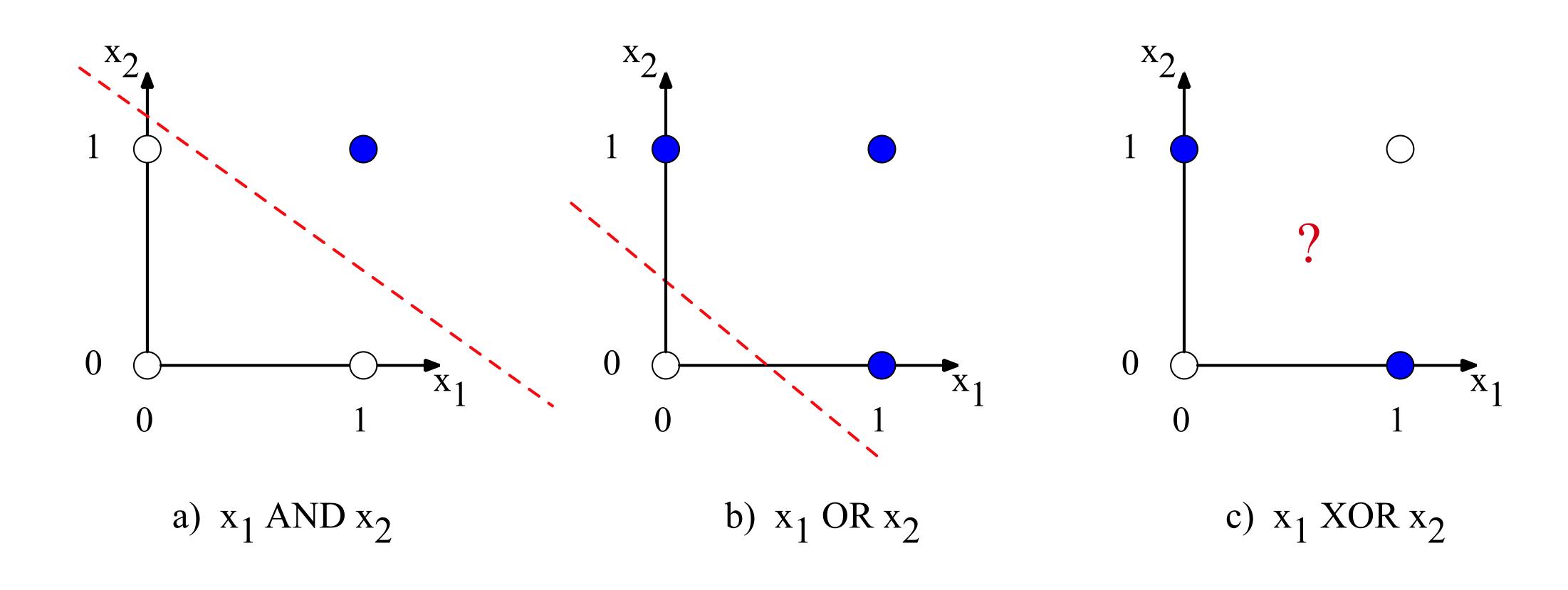


Visualizing the decision boundaries for AND and OR

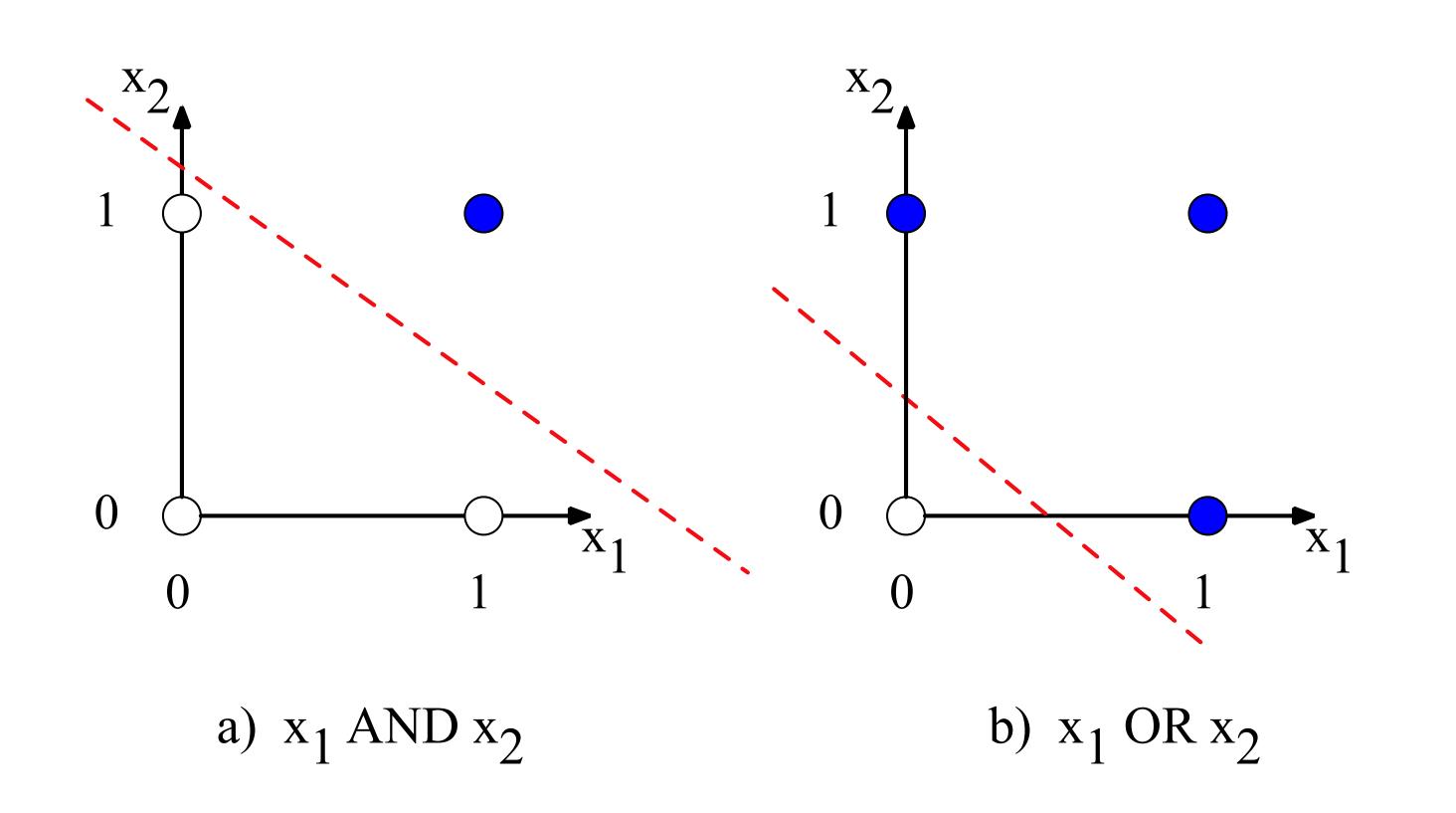


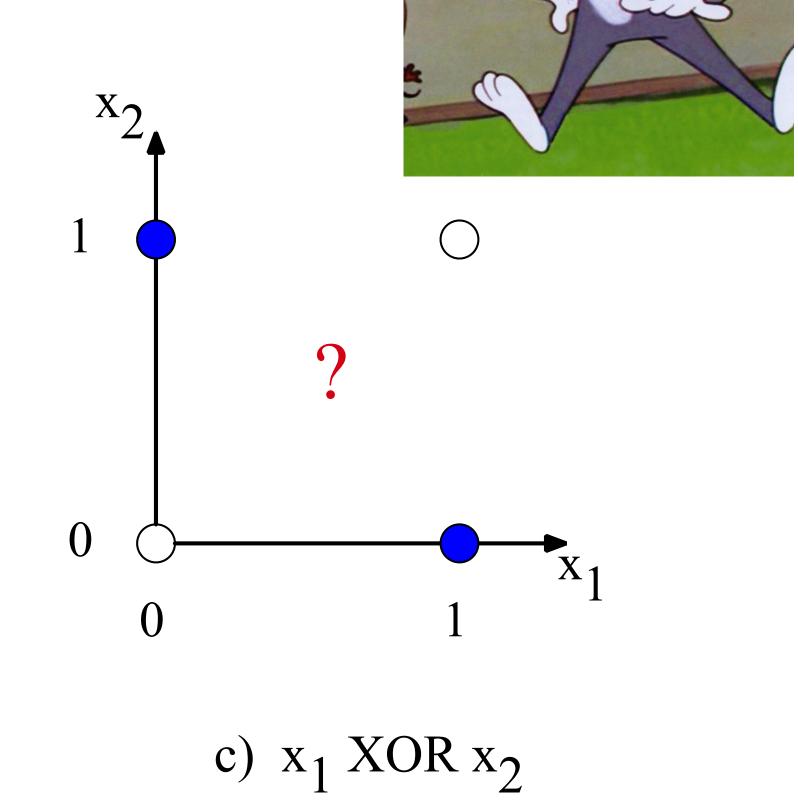
AND and OR are linearly separable!

Visualizing the decision boundaries for XOR



Visualizing the decision boundaries for XOR





XOR is **NOT** linearly separable!

10 years from prosperity to fall

- When Perceptron was introduced, it was quite exciting to have a machine that could learn from experience.
- This resulted in some vintage Al hype!
 - * Optimism ran wild: newspapers proclaimed that the perceptron would one day "walk, talk, see, and be conscious of its own existence."
 - * Lots of research fundings.

NEW NAVY DEVICE LEARNS BY DOING

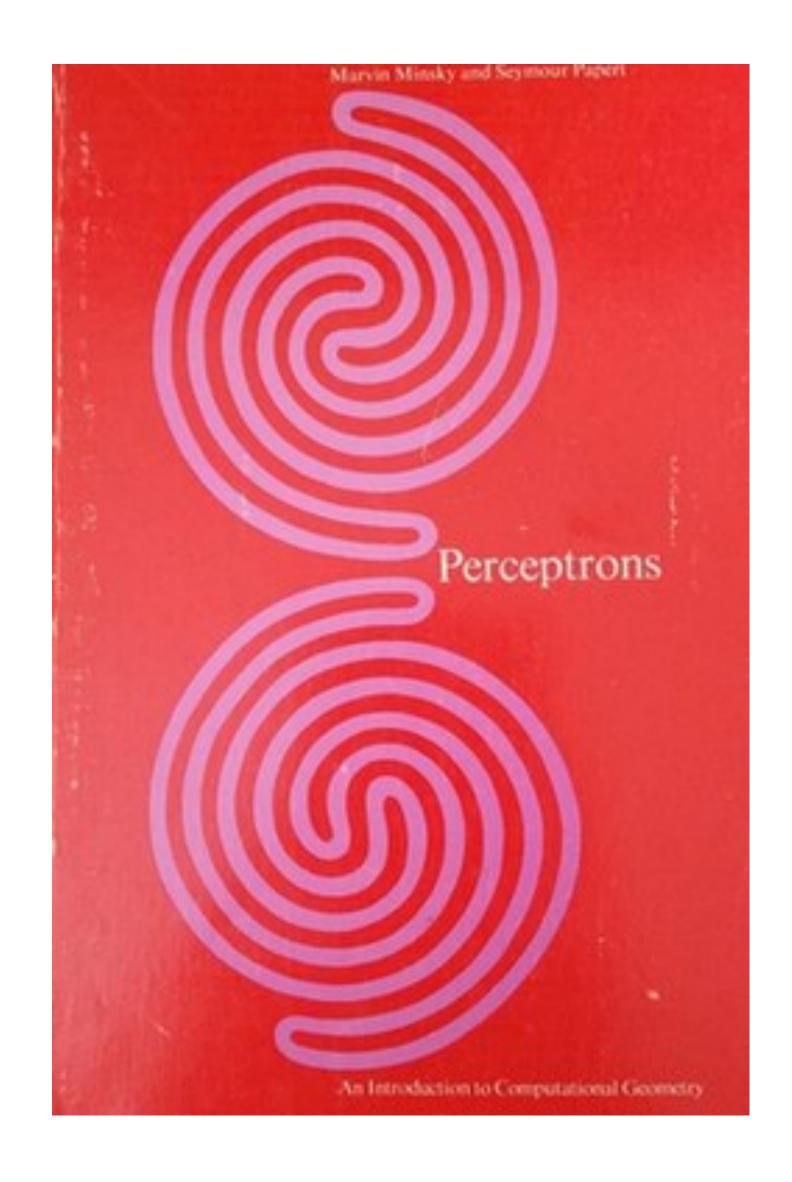
Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI)

The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

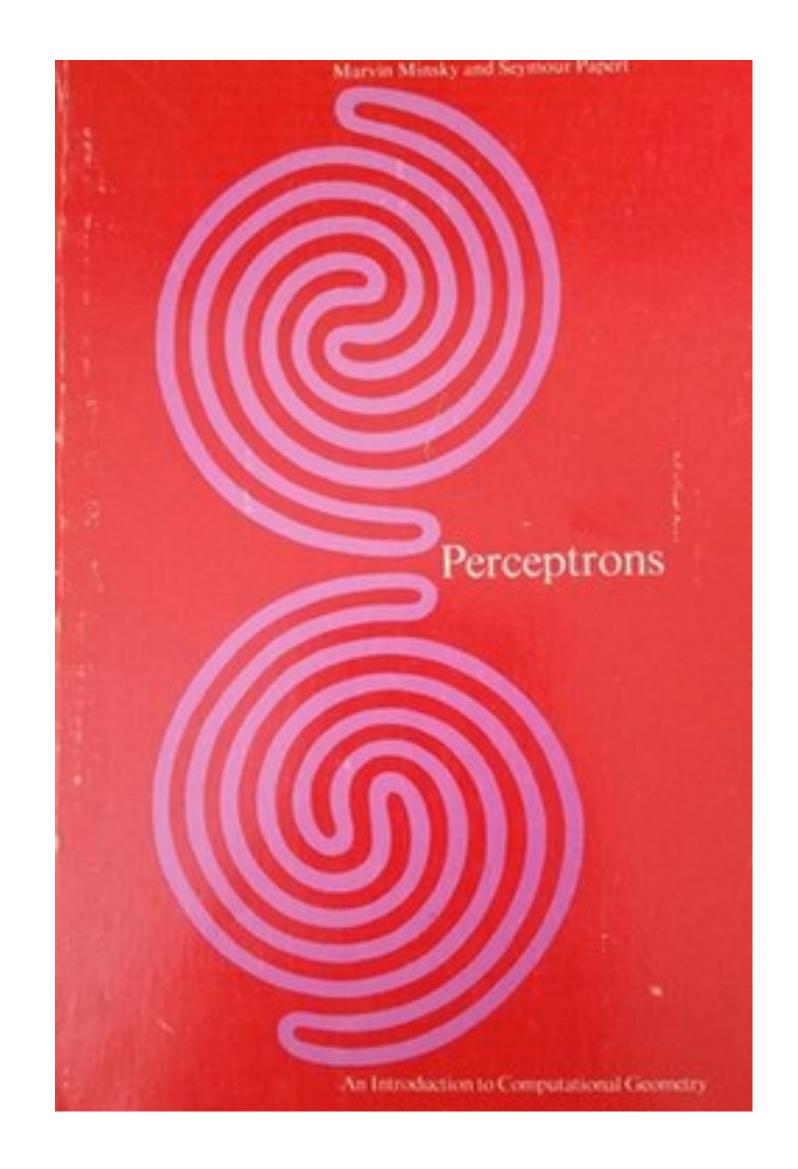
NYT, via StefanoErmon on Twitter https://x.com/StefanoErmon/status/936396977218056192?lang=en

10 years from prosperity to fall



10 years from prosperity to fall

- Minsky & Papert published a book named Perceptrons in 1969, a rigorous analysis showing that single-layer perceptrons could only learn linearly separable functions.
 - Highlighting the XOR problem.



10 years from prosperity to fall

- Minsky & Papert published a book named Perceptrons in 1969, a rigorous analysis showing that single-layer perceptrons could only learn linearly separable functions.
 - Highlighting the XOR problem.

The "And/Or" Theorem

4

O

In this chapter we prove the "And/Or" theorem stated in §1.5.

Theorem 4.0: There exist predicates ψ_1 and ψ_2 of order 1 such that $\psi_1 \wedge \psi_2$ and $\psi_1 \vee \psi_2$ are not of finite order.

We prove the assertion for $\psi_1 \wedge \psi_2$. The other half can be proved in exactly the same way. The techniques used in proving this theorem will not be used in the sequel and so the rest of the chapter can be omitted by readers who don't know, or who dislike, the following kind of algebra.

4.1 Lemmas

We have already remarked in §1.5 that if $R = A \cup B \cup C$ the predicate $|X \cap A| > |X \cap C|$ is of order 1, and stated without proof that if A, B, and C are disjoint (see Figure 4.1), then

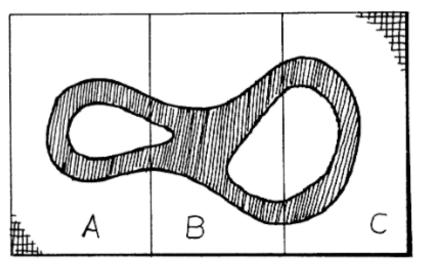


Figure 4.1

 $\lceil (|X \cap A| > |X \cap C|) \land (|X \cap B| > |X \cap C|) \rceil$

is not of bounded order as |R| becomes large. We shall now prove this assertion. We can assume without any loss of generality that the three parts of R have the same size M = |A| = |B| = |C|, and that |R| = 3M. We will consider predicates of the stated form for different-size retinas. We will prove that

If $\psi_M(X)$ is the predicate of the stated form for |R| = 3M, then the order of ψ_M increases without bound as $M \to \infty$.

The proof follows the pattern of proofs in Chapter 3. We shall assume that the order of $\{\psi_M\}$ is bounded by a fixed integer N

Minsky & Papert 1969

The Al Winter

10 years from prosperity to fall

- Minsky & Papert published a book named Perceptrons in 1969, a rigorous analysis showing that single-layer perceptrons could only learn linearly separable functions.
 - Highlighting the XOR problem.
- This resulted in the first Al winter:
 - * Research funding agencies concluded that neural networks had hit a theoretical dead end.
 - * Al research shifted towards symbolic logic, expert systems, rule-based reasoning (n-gram models were born in this stage!)

The "And/Or" Theorem

4

4 0

In this chapter we prove the "And/Or" theorem stated in §1.5.

Theorem 4.0: There exist predicates ψ_1 and ψ_2 of order 1 such that $\psi_1 \wedge \psi_2$ and $\psi_1 \vee \psi_2$ are not of finite order.

We prove the assertion for $\psi_1 \wedge \psi_2$. The other half can be proved in exactly the same way. The techniques used in proving this theorem will not be used in the sequel and so the rest of the chapter can be omitted by readers who don't know, or who dislike, the following kind of algebra.

4.1 Lemmas

We have already remarked in §1.5 that if $R = A \cup B \cup C$ the predicate $|X \cap A| > |X \cap C|$ is of order 1, and stated without proof that if A, B, and C are disjoint (see Figure 4.1), then

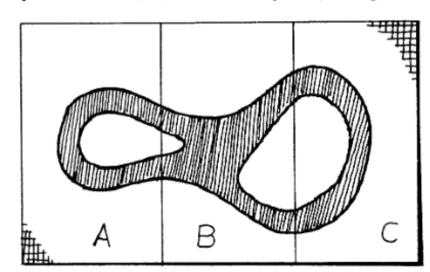


Figure 4.1

 $\lceil (|X \cap A| > |X \cap C|) \land (|X \cap B| > |X \cap C|) \rceil$

is not of bounded order as |R| becomes large. We shall now prove this assertion. We can assume without any loss of generality that the three parts of R have the same size M = |A| = |B| = |C|, and that |R| = 3M. We will consider predicates of the stated form for different-size retinas. We will prove that

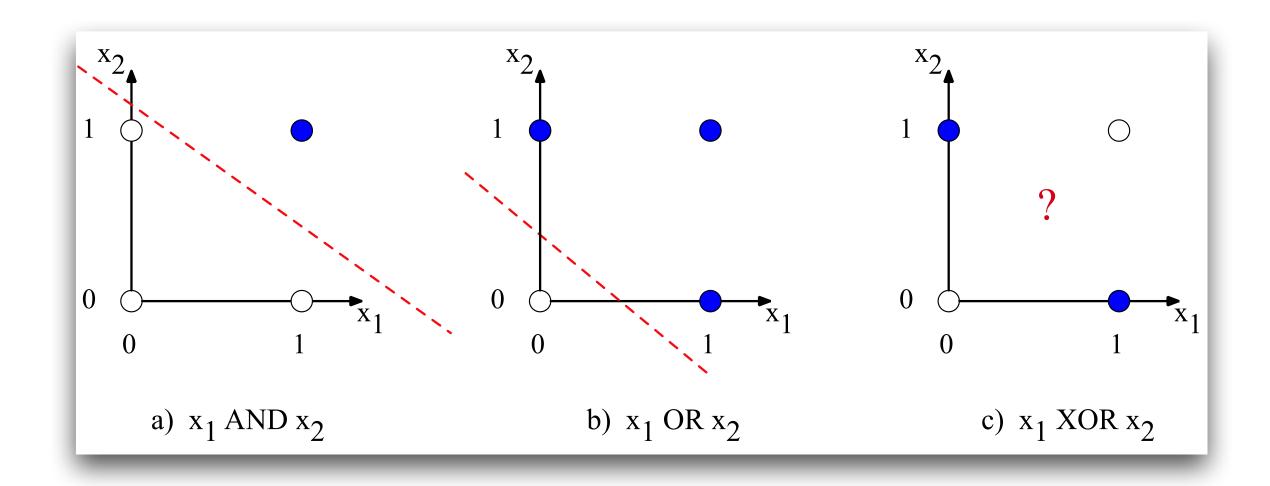
If $\psi_M(X)$ is the predicate of the stated form for |R| = 3M, then the order of ψ_M increases without bound as $M \to \infty$.

The proof follows the pattern of proofs in Chapter 3. We shall assume that the order of $\{\psi_M\}$ is bounded by a fixed integer N

Minsky & Papert 1969

Interium Summary 2

- The XOR Problem demonstrates a crucial limit of a single-neuron perceptron.
- Perceptron can only learn linearly separable patterns.
- This triggers the first Al winter after the initial Al hype for 10 years.



The Revival of Neural Networks 1980s

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

What if we use more than one layer?

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

Here is one way to think about it. By definition:

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

- Here is one way to think about it. By definition:
 - XOR = exclusive OR: x1 OR x2, but not both

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

- Here is one way to think about it. By definition:
 - XOR = exclusive OR: x1 OR x2, but not both
 - Formally: (x1 OR x2) AND (NOT (x1 AND x2))

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

- Here is one way to think about it. By definition:
 - XOR = exclusive OR: x1 OR x2, but not both
 - Formally: (x1 OR x2) AND (NOT (x1 AND x2))
- Is it possible to do it compositionally?

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

- Here is one way to think about it. By definition:
 - XOR = exclusive OR: x1 OR x2, but not both
 - Formally: (x1 OR x2) AND (NOT (x1 AND x2))
- Is it possible to do it compositionally?
 - Let h1 = (x1 OR x2), h2 = (x1 AND x2)

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

- Here is one way to think about it. By definition:
 - XOR = exclusive OR: x1 OR x2, but not both
 - Formally: (x1 OR x2) AND (NOT (x1 AND x2))
- Is it possible to do it compositionally?
 - Let h1 = (x1 OR x2), h2 = (x1 AND x2)
 - Then, (x1XORx2) == h1AND(NOTh2)

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

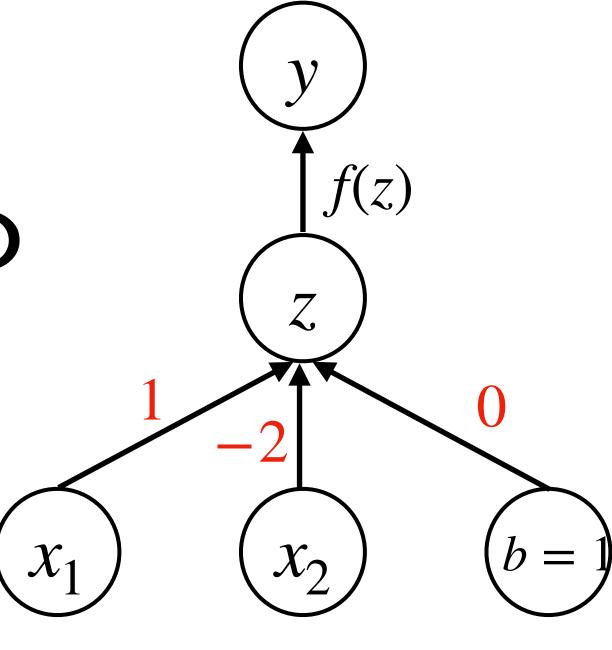
- Here is one way to think about it. By definition:
 - XOR = exclusive OR: x1 OR x2, but not both
 - Formally: (x1 OR x2) AND (NOT (x1 AND x2))
- Is it possible to do it compositionally?
 - Let h1 = (x1 OR x2), h2 = (x1 AND x2)
 - Then, (x1XORx2) == h1AND(NOTh2)
 - We do know how to express **AND**, and here is a simple tweak for **NOT**:

What if we use more than one layer?

- Here is one way to think about it. By definition:
 - XOR = exclusive OR: x1 OR x2, but not both
 - Formally: (x1 OR x2) AND (NOT (x1 AND x2))
- Is it possible to do it compositionally?
 - Let h1 = (x1 OR x2), h2 = (x1 AND x2)
 - Then, (x1 XOR x2) == h1 AND (NOT h2)
 - We do know how to express **AND**, and here is a simple tweak for **NOT**:

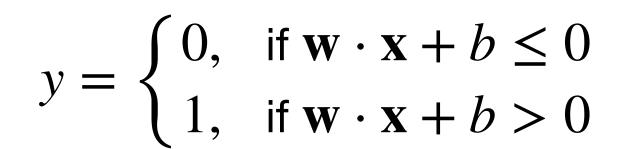
$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

x1 AND (NOT x2)

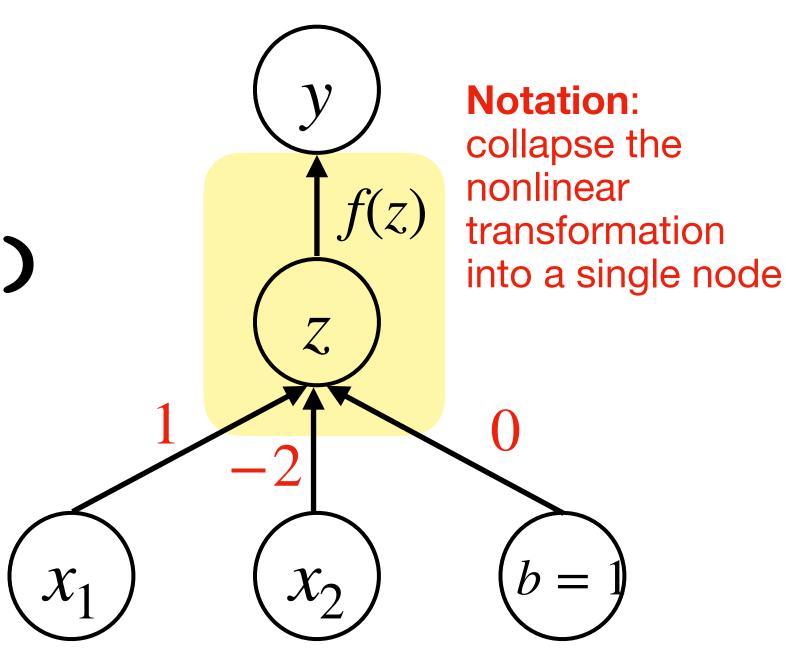


What if we use more than one layer?

- Here is one way to think about it. By definition:
 - XOR = exclusive OR: x1 OR x2, but not both
 - Formally: (x1 OR x2) AND (NOT (x1 AND x2))
- Is it possible to do it compositionally?
 - Let h1 = (x1 OR x2), h2 = (x1 AND x2)
 - Then, (x1XORx2) == h1AND(NOTh2)
 - We do know how to express **AND**, and here is a simple tweak for **NOT**:



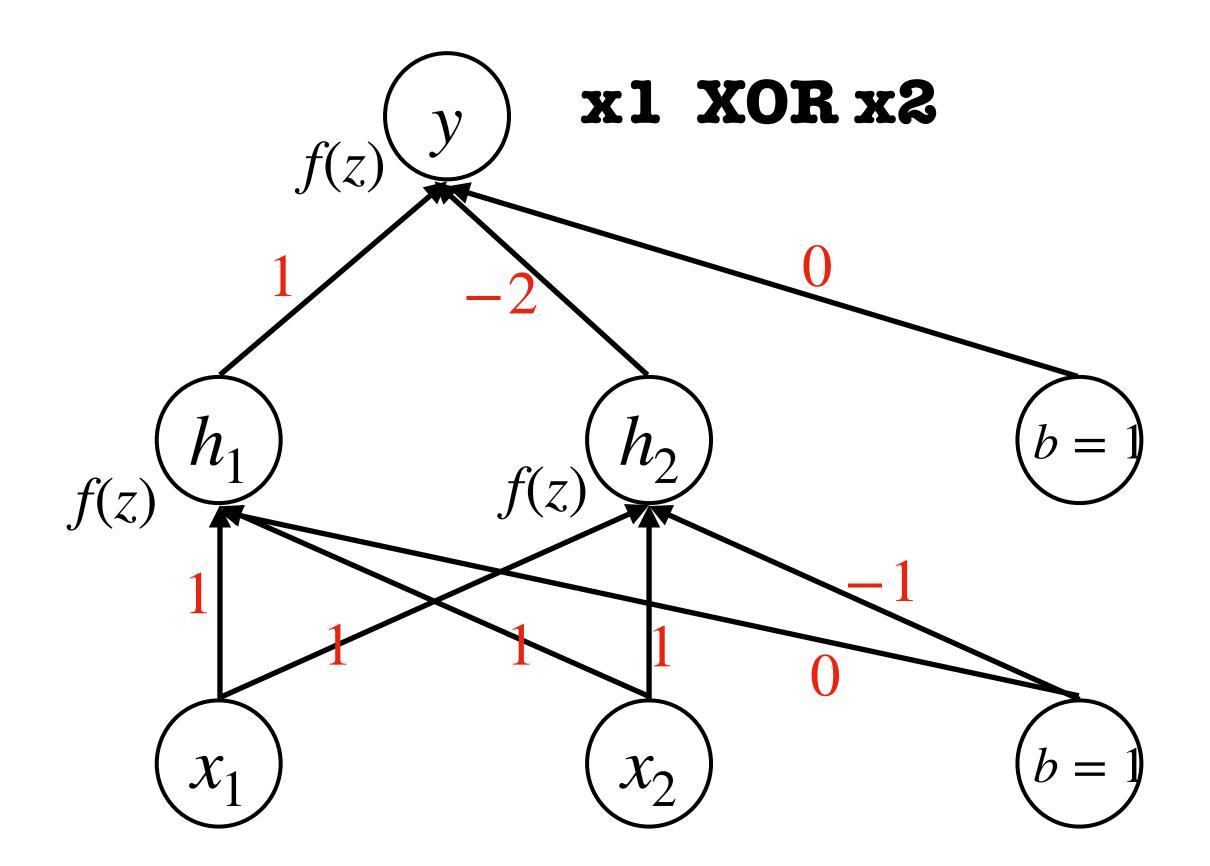
x1 AND (NOT x2)



$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

What if we use more than one layers?

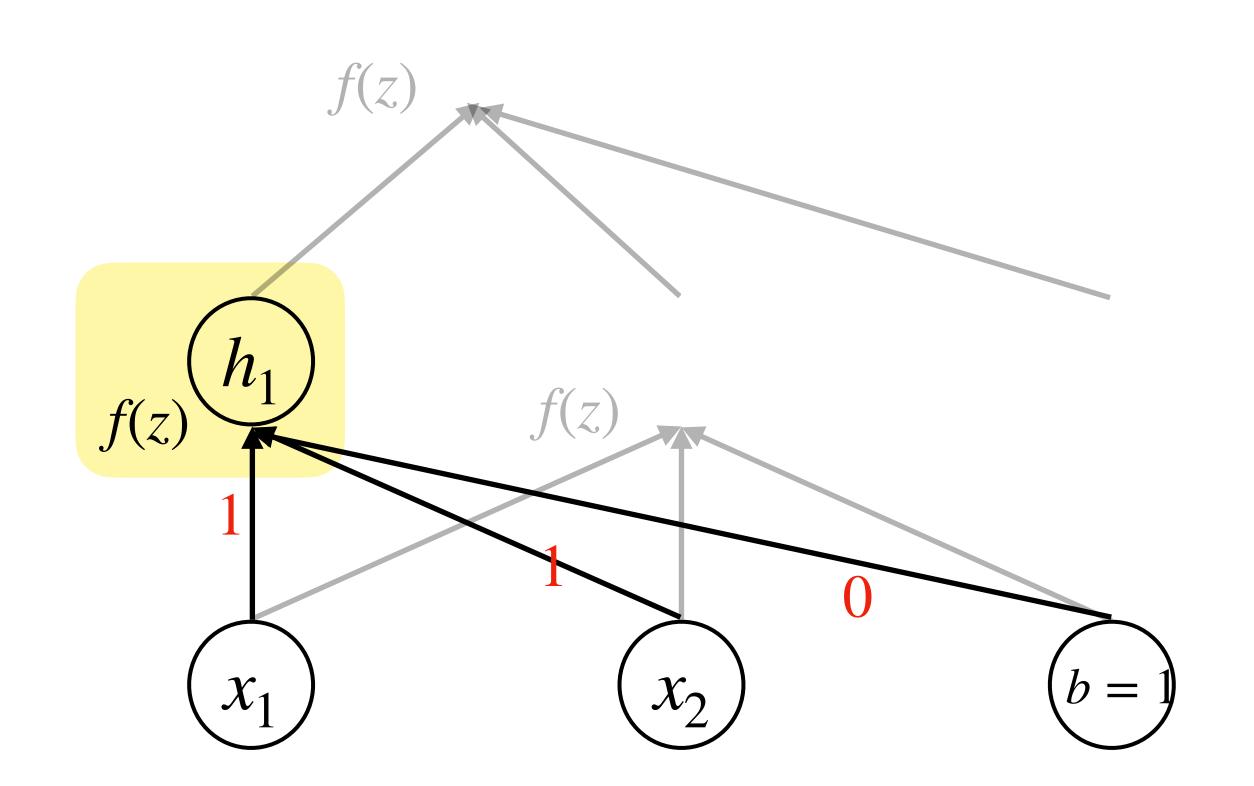
Here is one implementation:

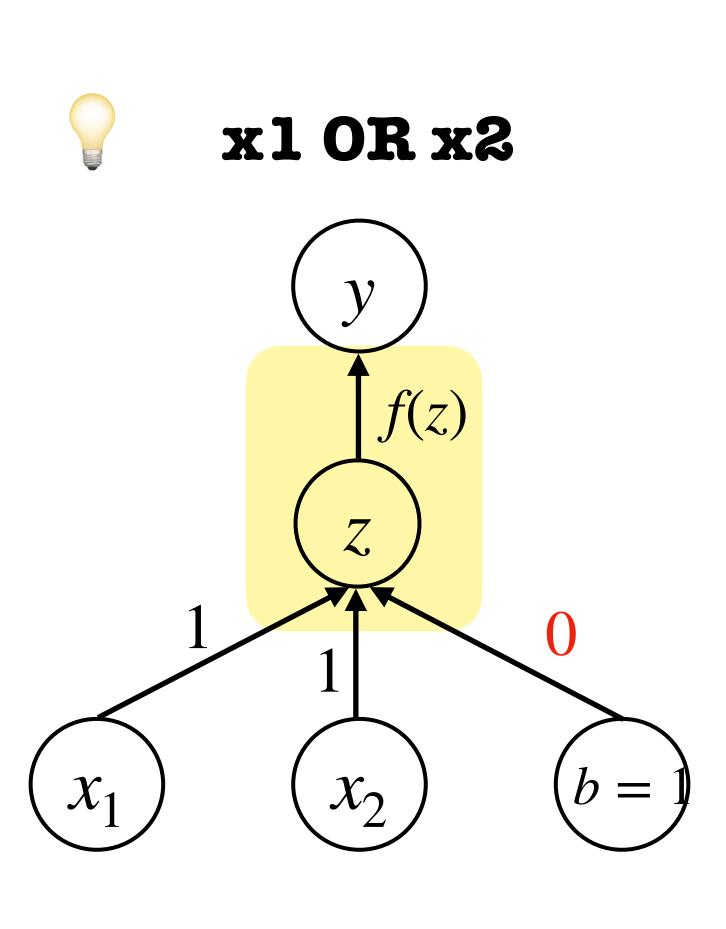


$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

What if we use more than one layers?

• Component 1: the **OR** gate

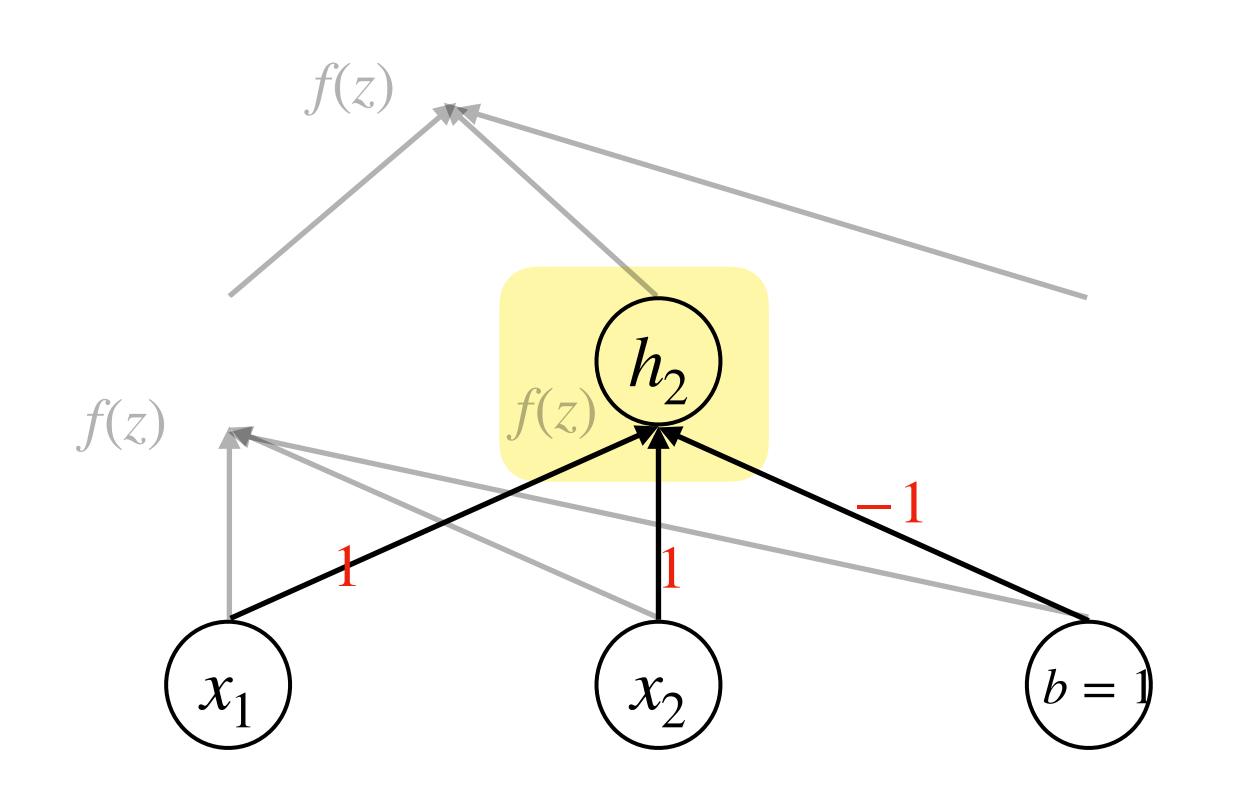


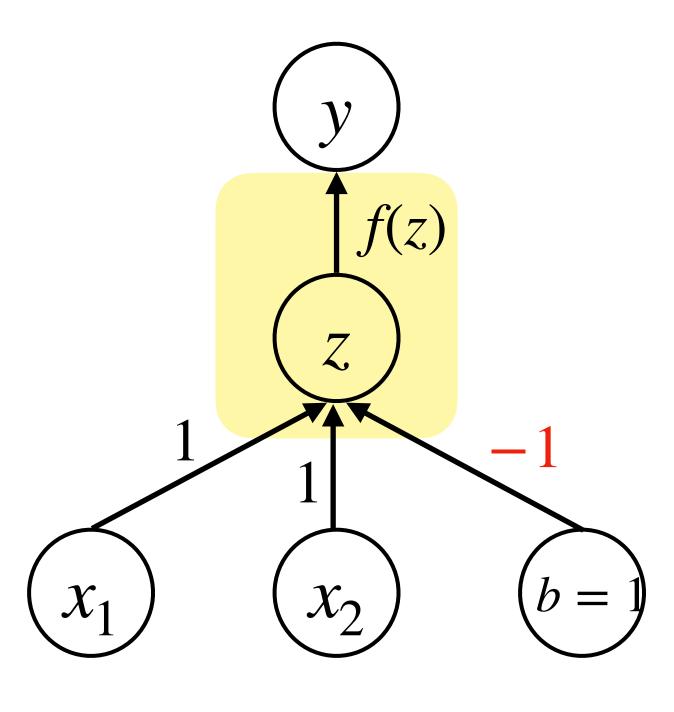


$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

What if we use more than one layers?

• Component 2: the **AND** gate

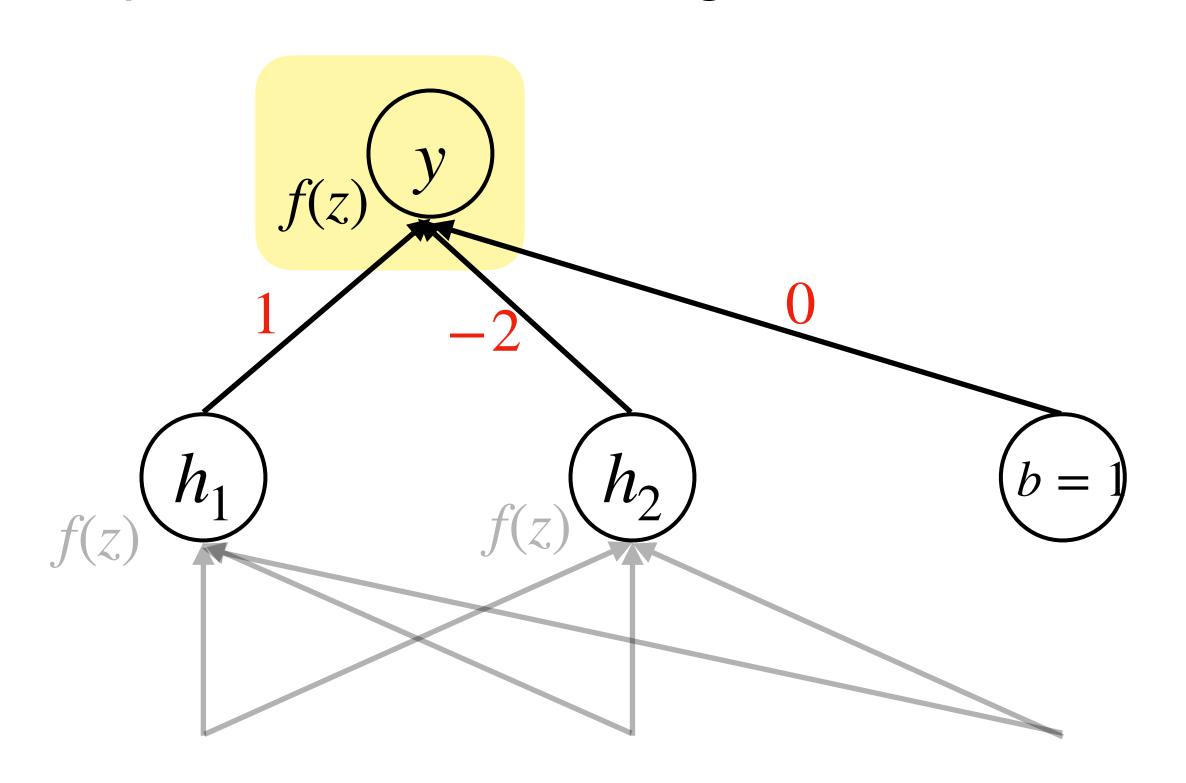


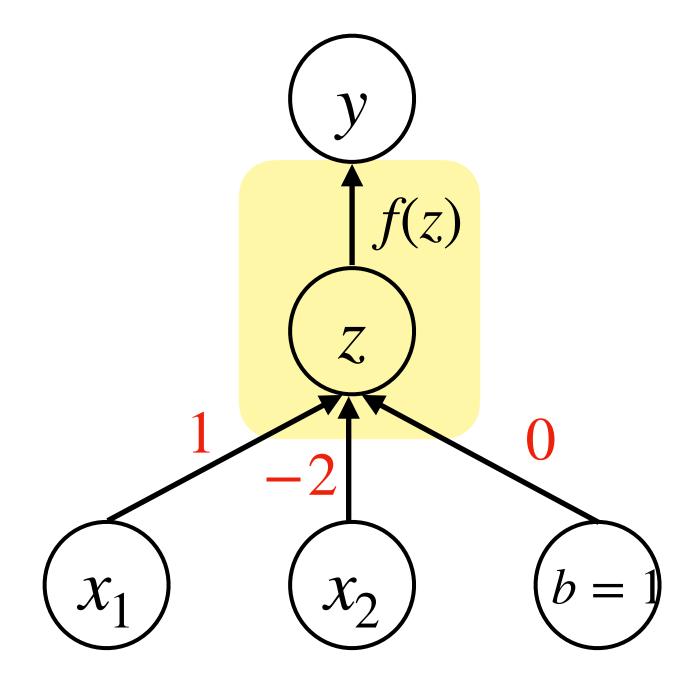


$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

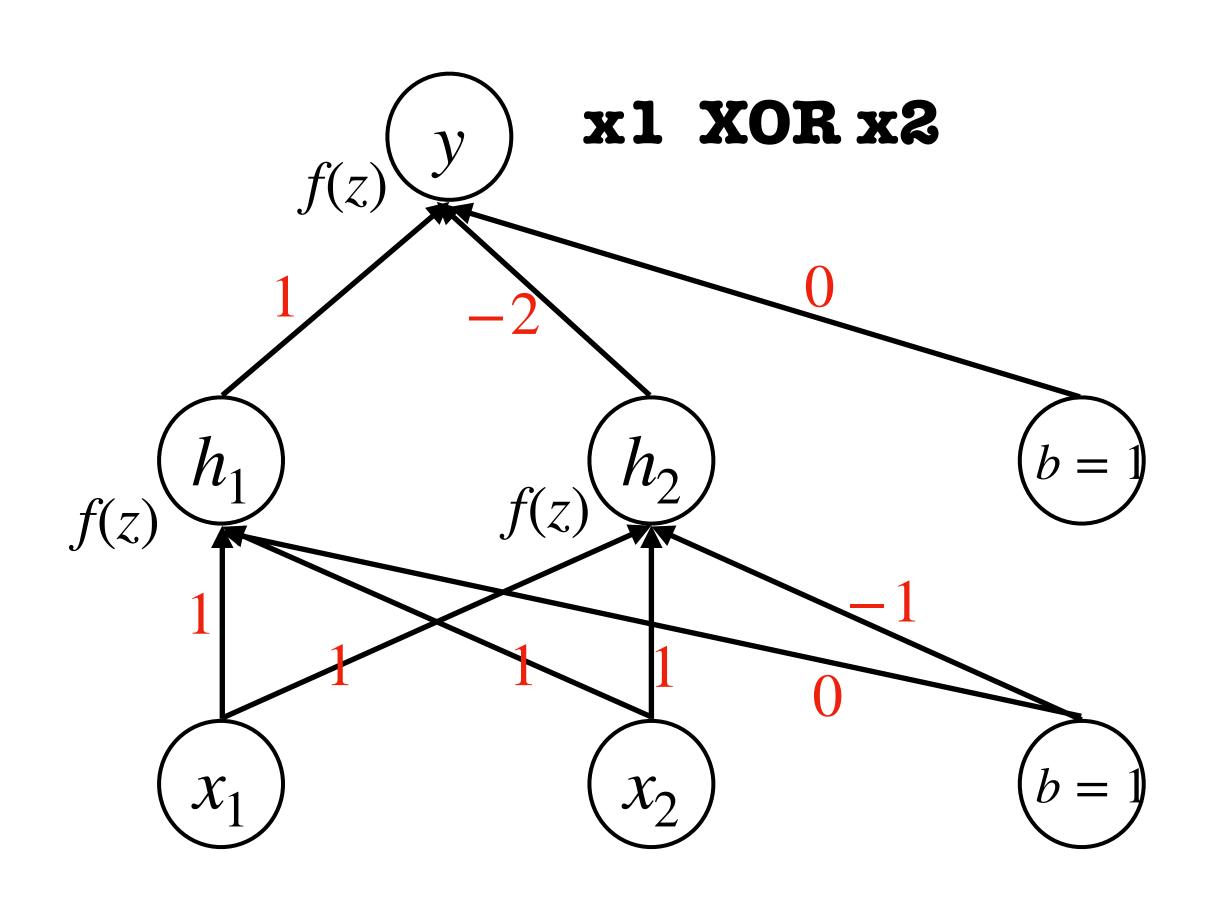
What if we use more than one layers?

• Component 3: the **AND** gate with **NOT**

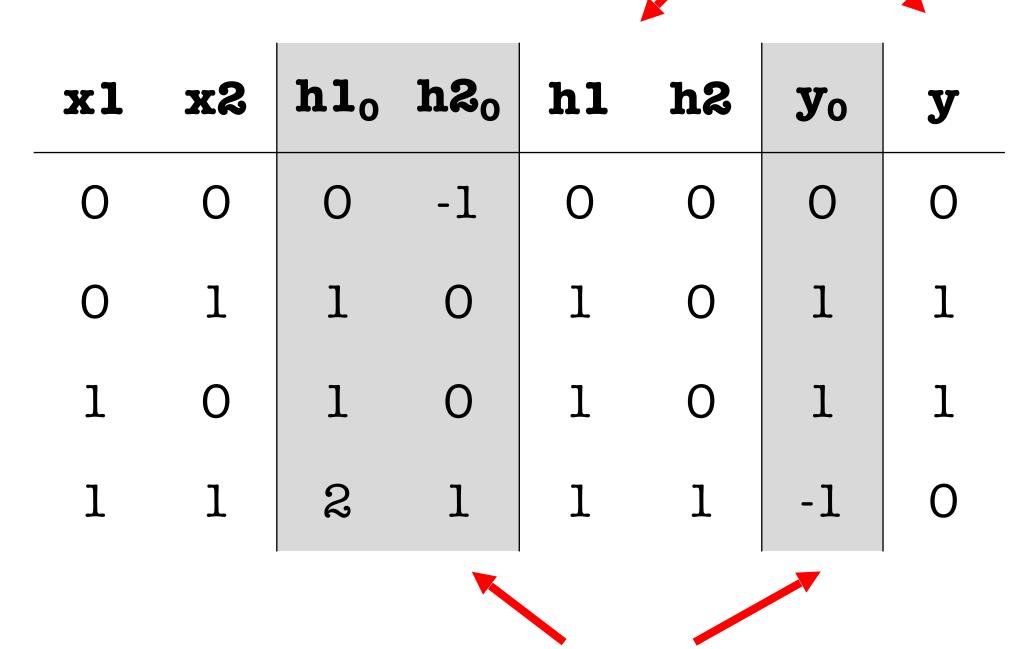




Let's verify!

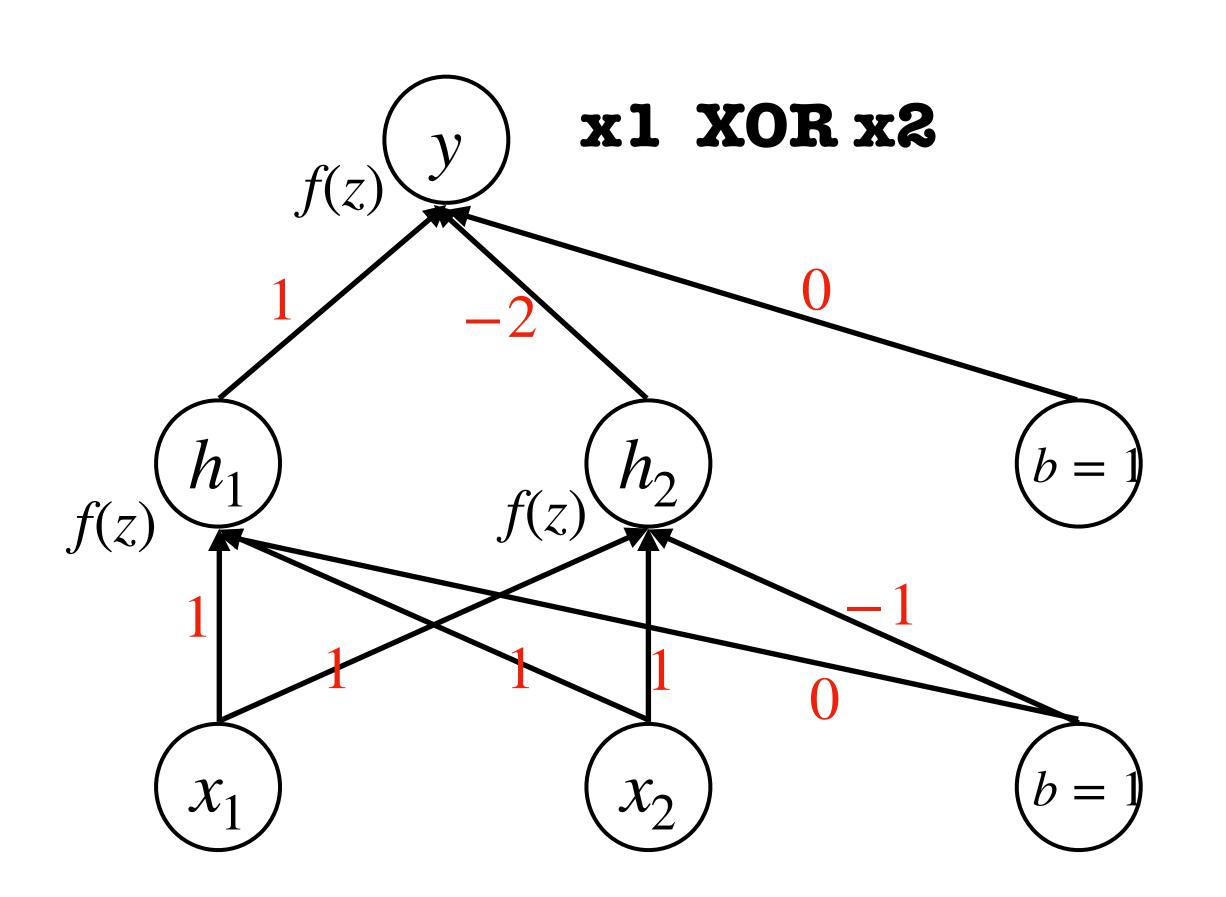


after transformation through f



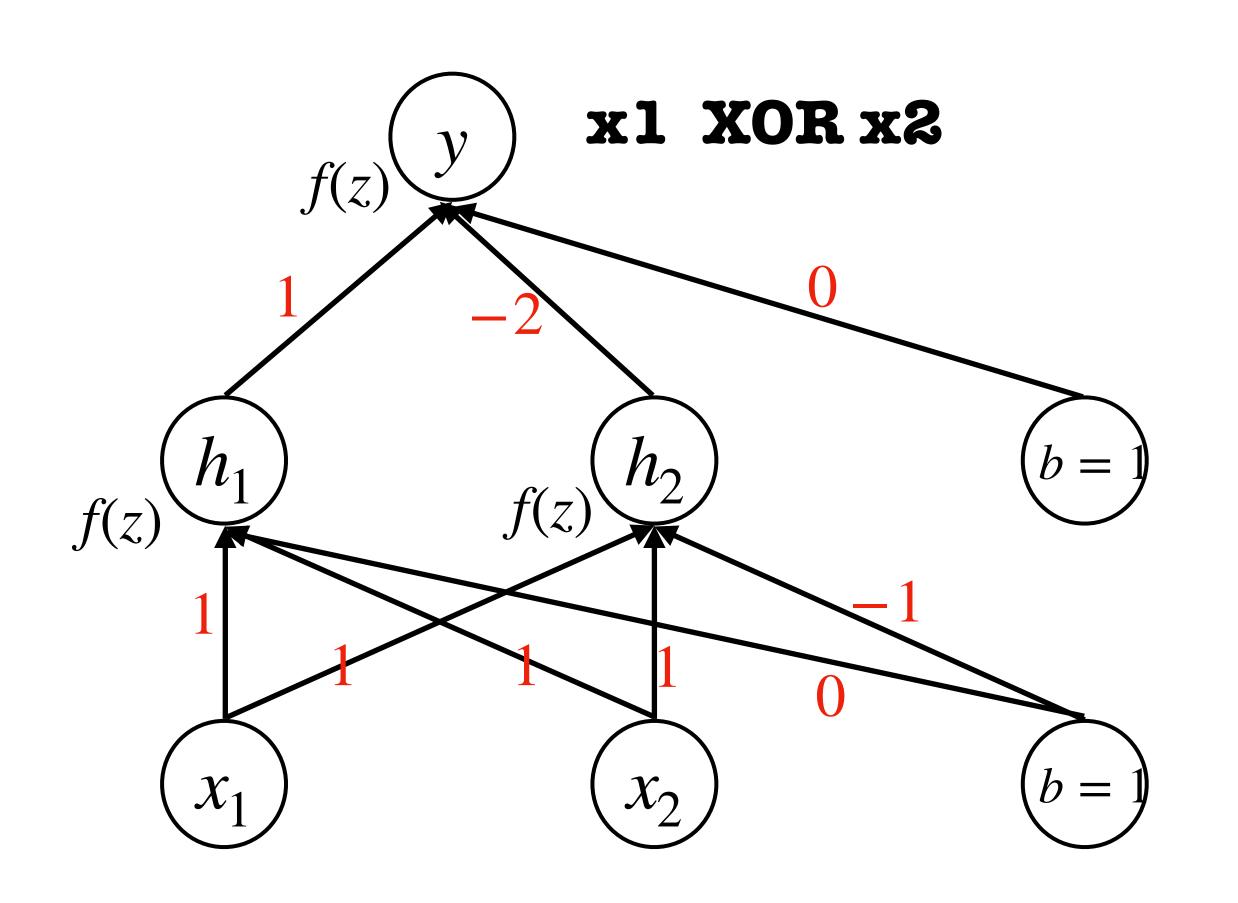
Before transformation through f

Let's verify!



жl	x2	hlo	h2 ₀	h1	h2	Уo	y
0	0	0	-1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	1	0	1	0	1	1
1	1	2	1	1	1	-1	O

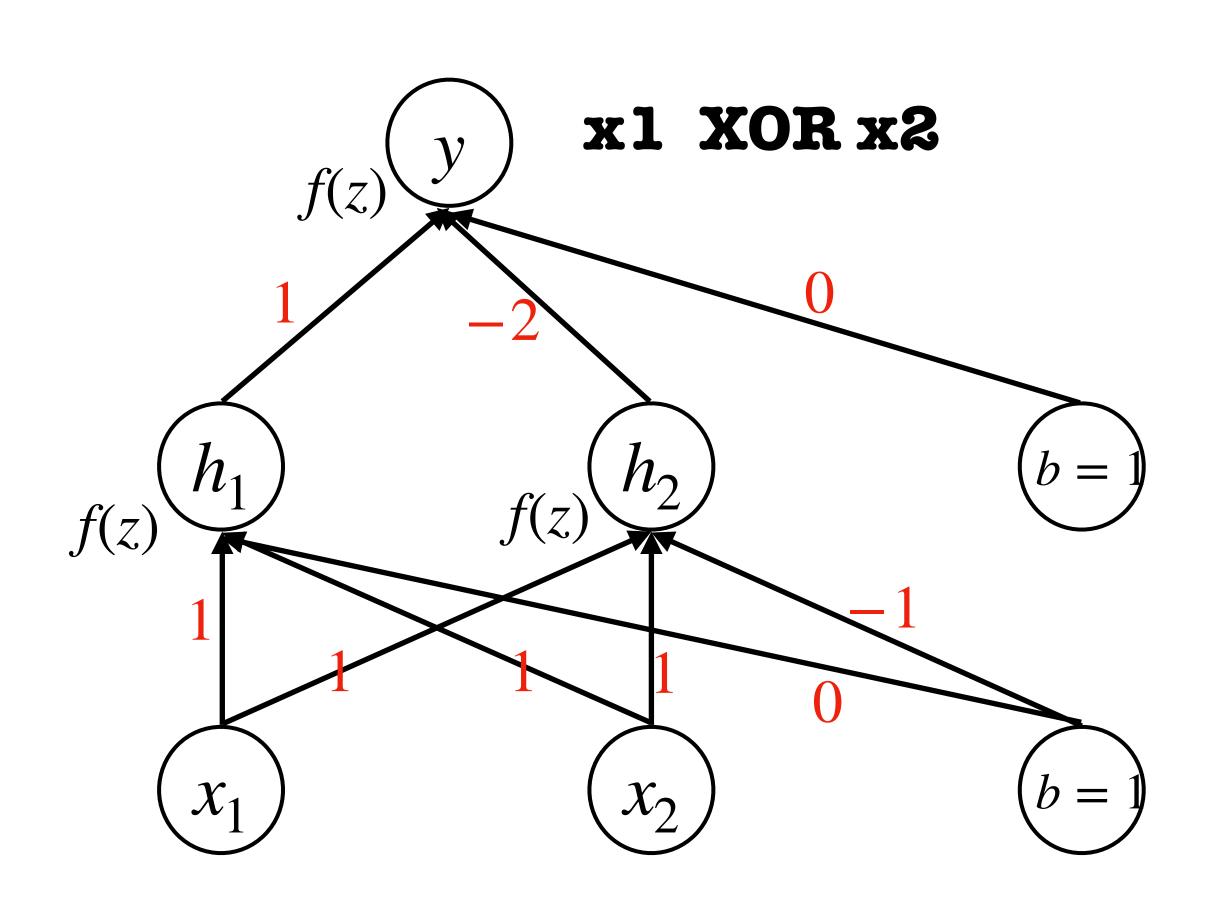
Let's verify!



OR

жl	x2	hlo	h2 ₀	hl	h2	Уo	y
0	0	0	-1	0	Ο	0	O
0	1	1	0	1	O	1	1
1	0	1	0	1	O	1	1
1	1	2	1	1	1	-1	0
					ĺ		

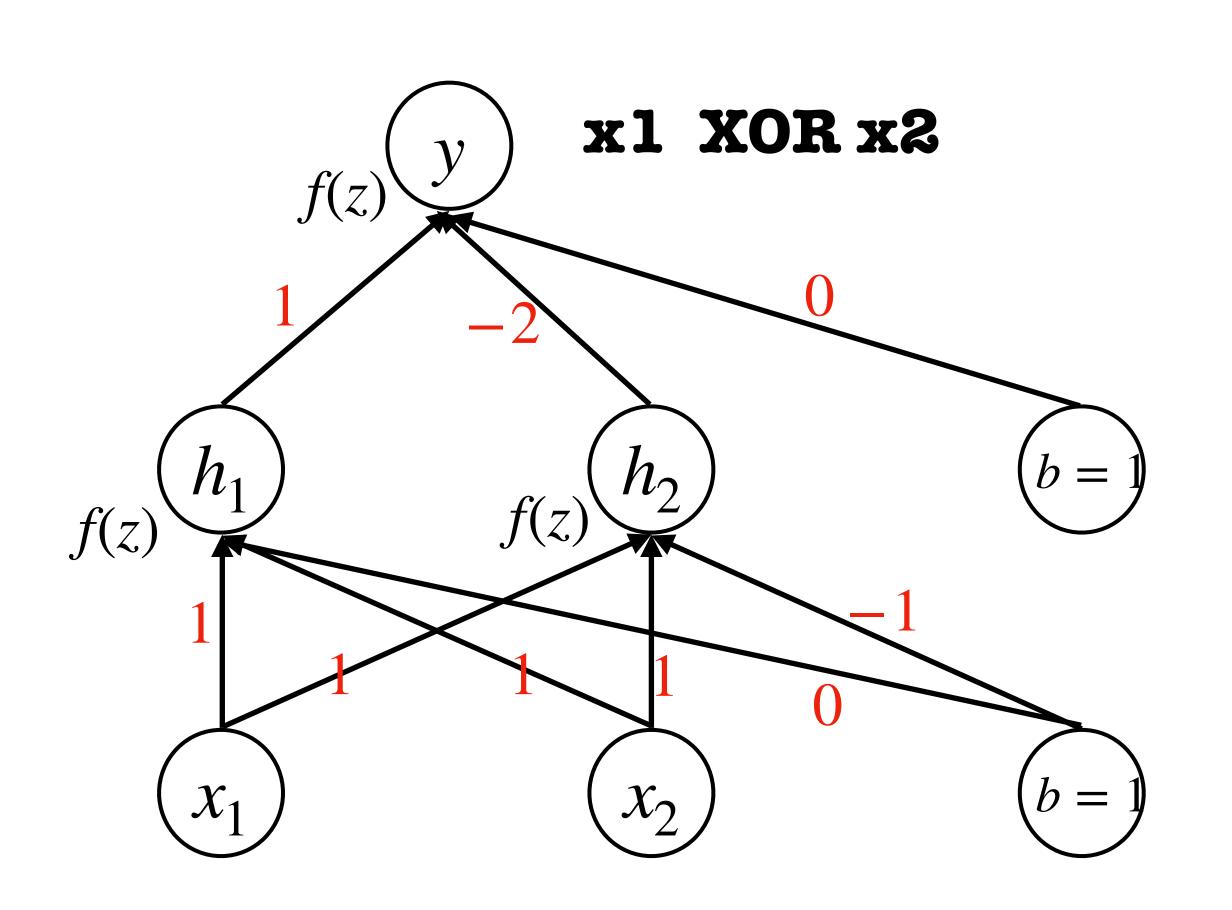
Let's verify!



OR AND

x1	x2	hlo	h2 ₀	hl	h2	у о	y
0	0	0	-1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	1	0	1	0	1	1
1	1	2	1	1	1	-1	0

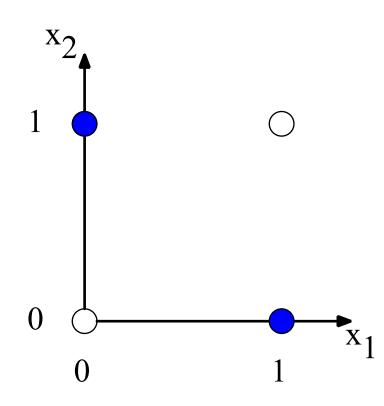
Let's verify!



OR AND XOR

жl	x2	hlo	h2 ₀	hl	h2	Уo	y
0	0	0	-1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	1	0	1	0	1	1
1	1	2	1	1	1	-1	0

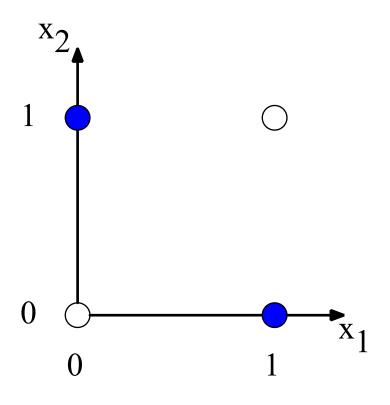
Key Idea = using nonlinear transformation at intermediate stages



a) The original x space

Key Idea = using nonlinear transformation at intermediate stages

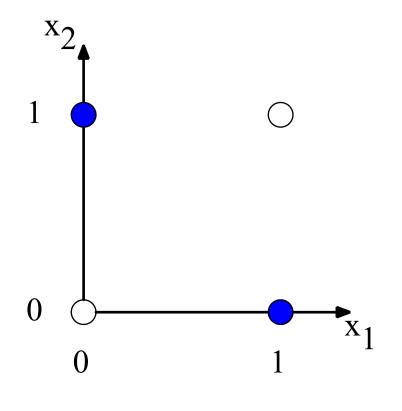
- For a Perceptron, the nonlinearly transformated result directly becomes the output;
 - → There is no chance for the model to do further computation on it;



a) The original x space

Key Idea = using nonlinear transformation at intermediate stages

- For a Perceptron, the nonlinearly transformated result directly becomes the output;
 - → There is no chance for the model to do further computation on it;

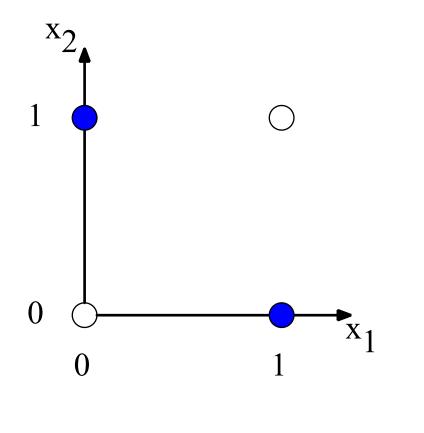


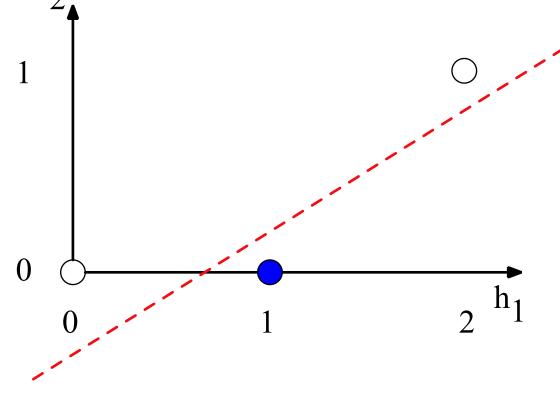
a) The original x space

• For a two-layer neural network: it can use the nonlinear transformation of the first layer to extract whatever useful features (in our case: **AND** and **OR**);

Key Idea = using nonlinear transformation at intermediate stages

- For a Perceptron, the nonlinearly transformated result directly becomes the output;
 - → There is no chance for the model to do further computation on it;



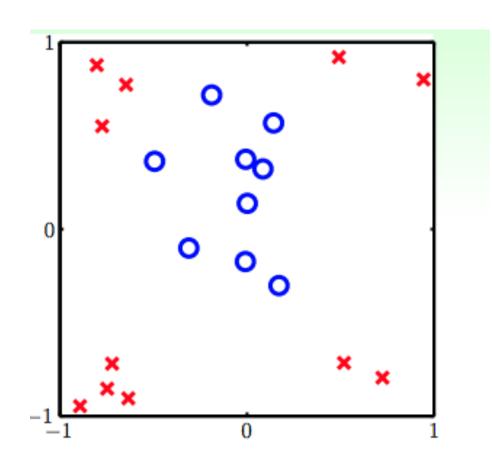


a) The original x space

- b) The new (linearly separable) h space
- For a two-layer neural network: it can use the nonlinear transformation of the first layer to extract whatever useful features (in our case: **AND** and **OR**);
- And it can use the extracted hidden features to do more computation (further nonlinear transformation) it could be that those intermediate features are transformed to a linearly separable space!

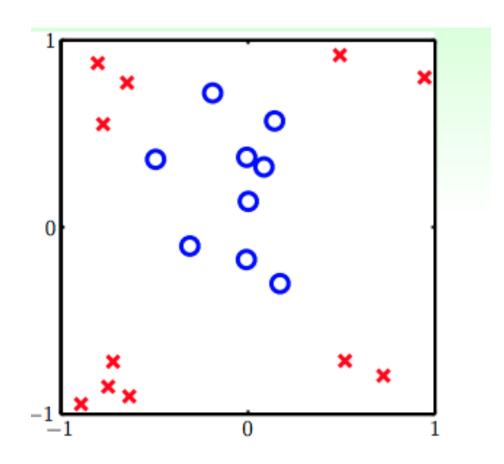
More on Nonlinearity

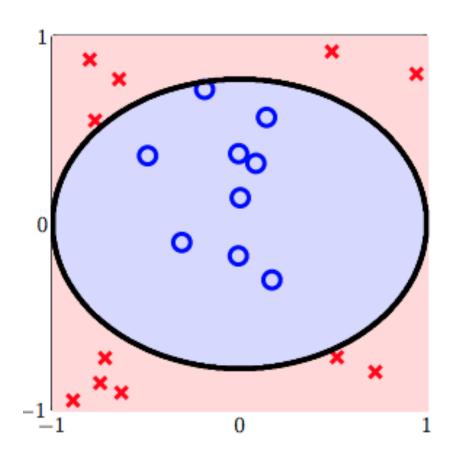
Nonlinear transformation are extremely powerful



More on Nonlinearity

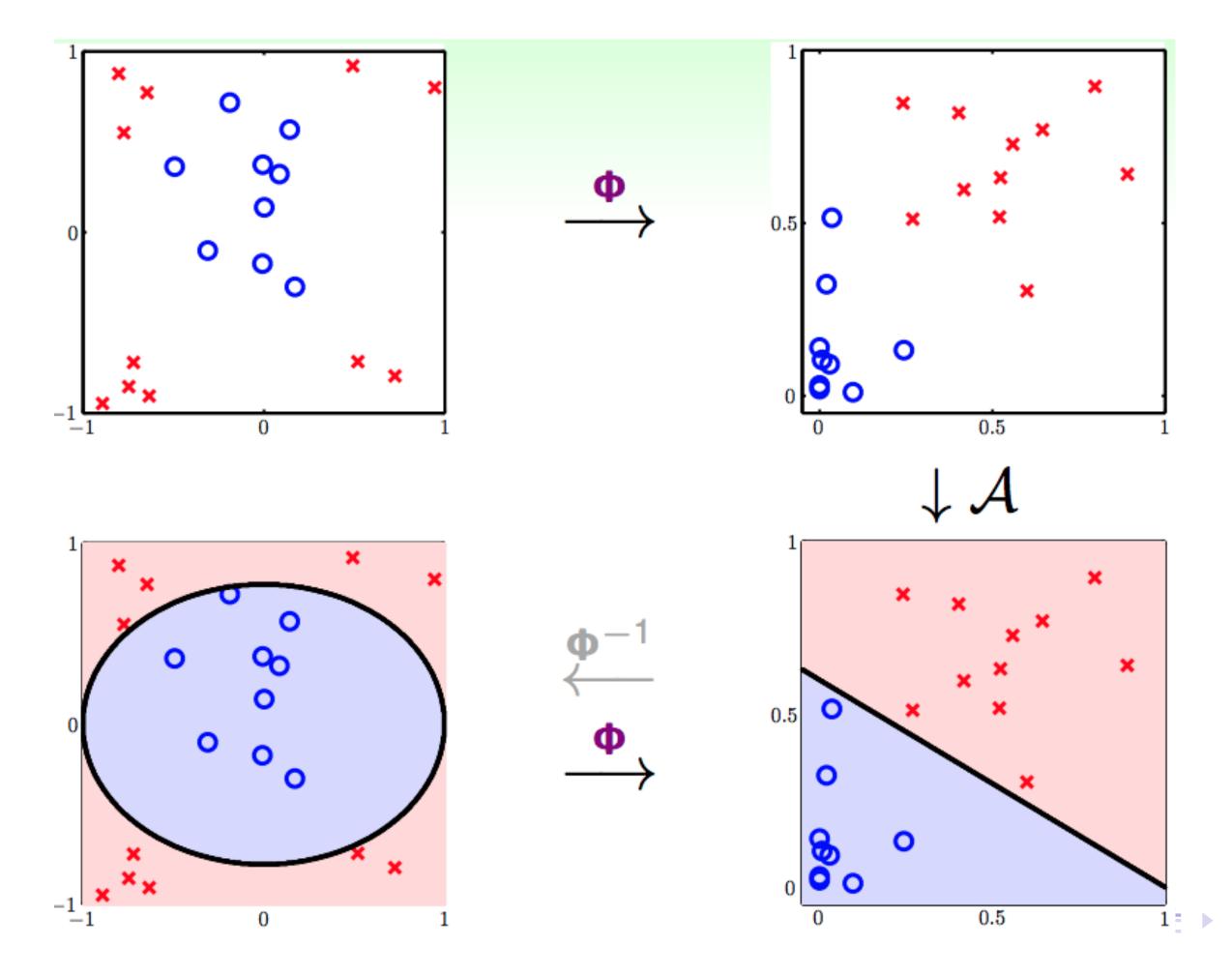
Nonlinear transformation are extremely powerful





More on Nonlinearity

Nonlinear transformation are extremely powerful

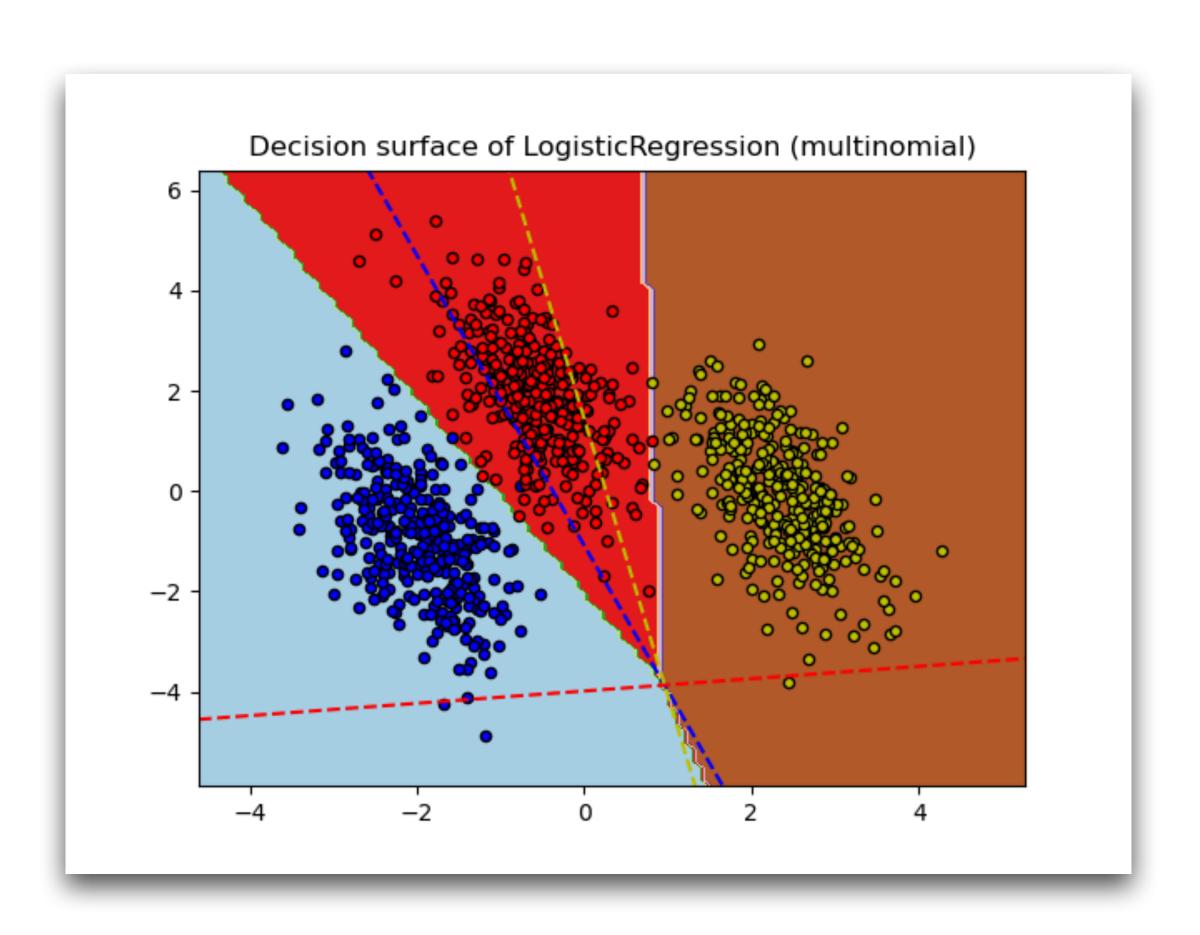


e.g. Tranforming to the Polar coordinate to make an originally non-linearly-separable dataset separable!

From Logistic Regression to Multinomial Logistic Regression

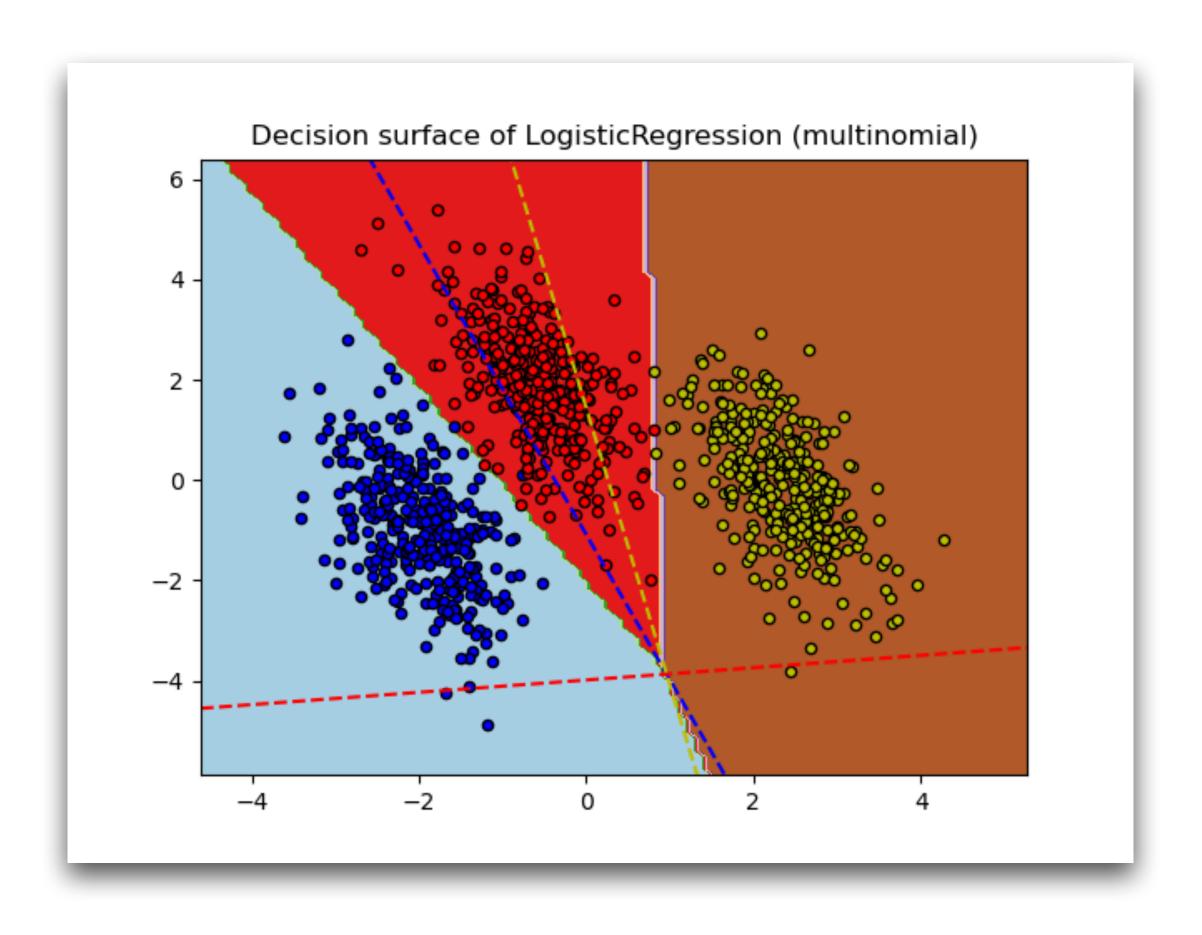
From Logistic Regression to Multinomial Logistic Regression

 Let's consider a simple generalization: imagine we are doing a classification task with multiple classes / labels. How to represent multiple outcomes?



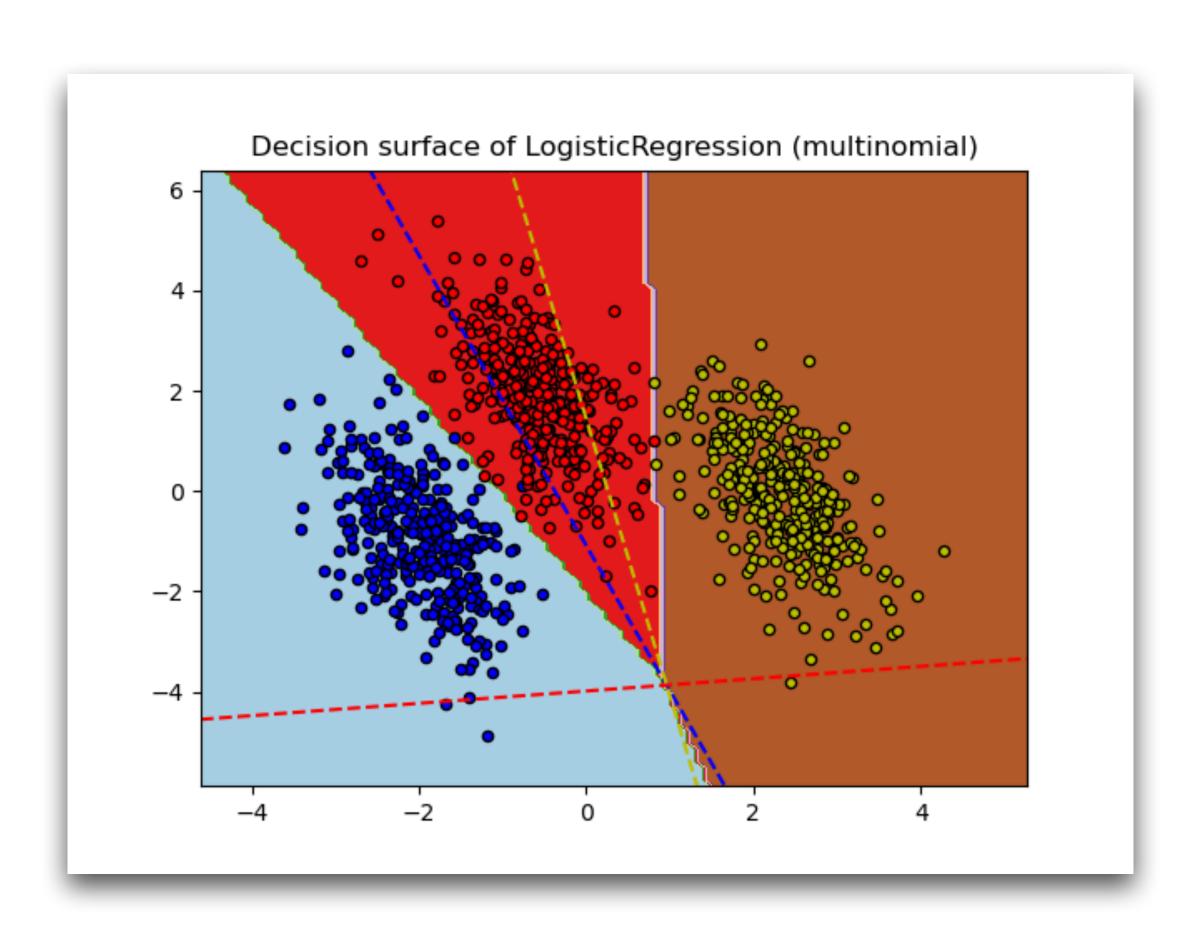
From Logistic Regression to Multinomial Logistic Regression

- Let's consider a simple generalization: imagine we are doing a classification task with multiple classes / labels. How to represent multiple outcomes?
- Two tweaks:
 - Have multiuple output nodes (one per class);
 - Switch the activation function to softmax;



From Logistic Regression to Multinomial Logistic Regression

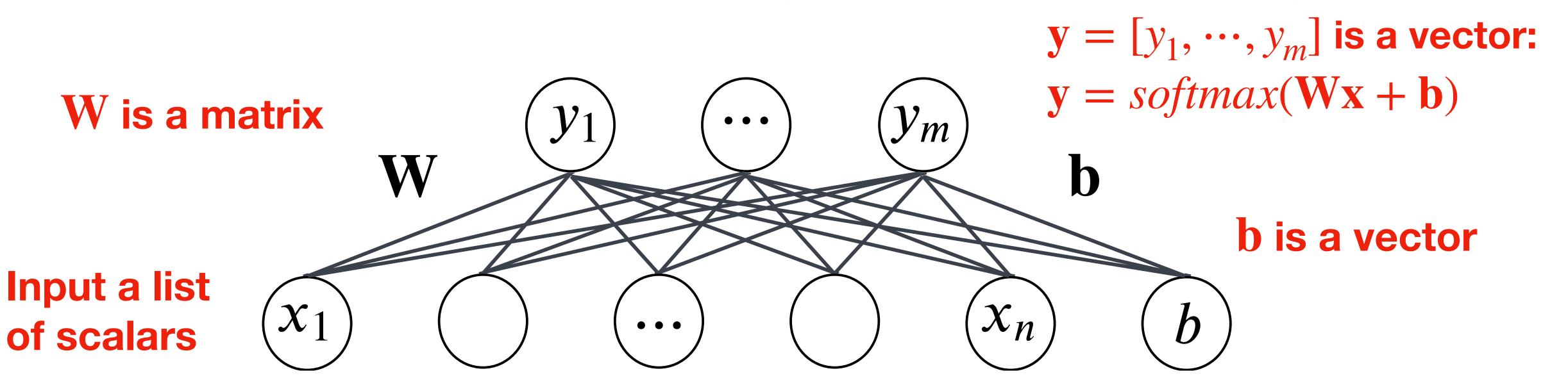
- Let's consider a simple generalization: imagine we are doing a classification task with multiple classes / labels. How to represent multiple outcomes?
- Two tweaks:
 - Have multiuple output nodes (one per class);
 - Switch the activation function to softmax;
- This is also known as multinomial logistic regression.



Multinomial Logistic Regression

Decision surface of LogisticRegression (multinomial)

- Suppose we have n input features and m classes;
- One way to represent it is a 1-layer neural network with multiple output nodes (i.e., a layer of neurons)
- We don't count the input layer as a layer, so this network has 1 layer.



Softmax: A generalization of Sigmoid

Getting a probability distribution for multi-class classification!

Softmax: A generalization of Sigmoid

Getting a probability distribution for multi-class classification!

• Sigmoid takes a real value and outputs a probability in range [0, 1];

Getting a probability distribution for multi-class classification!

- Sigmoid takes a real value and outputs a probability in range [0, 1];
- Softmax takes <u>a list of real values</u> and outputs <u>a probability distribution</u> (a list of the same length as the input that sums to 1).

Getting a probability distribution for multi-class classification!

- Sigmoid takes a real value and outputs a probability in range [0, 1];
- Softmax takes a <u>list of real values</u> and outputs a <u>probability distribution</u> (a list of the same length as the input that sums to 1).
- Formally: for a vector z of dimensionality k:

$$softmax(\mathbf{z}) = \left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \dots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)} \right]$$

Getting a probability distribution for multi-class classification!

- Sigmoid takes a real value and outputs a probability in range [0, 1];
- Softmax takes <u>a list of real values</u> and outputs <u>a probability distribution</u> (a list of the same length as the input that sums to 1).
- Formally: for a vector z of dimensionality k:

$$softmax(\mathbf{z}) = \left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \dots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)} \right]$$

An example:

$$\mathbf{z} = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$$

 $softmax(\mathbf{z}) = [0.055, 0.090, 0.006, 0.099, 0.74, 0.010]$

Getting a probability distribution for multi-class classification!

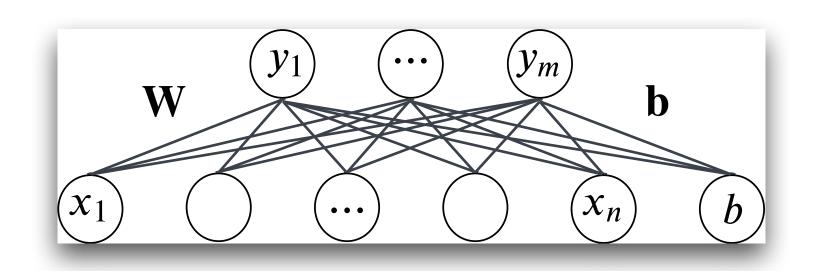
- Sigmoid takes a real value and outputs a probability in range [0, 1];
- Softmax takes <u>a list of real values</u> and outputs <u>a probability distribution</u> (a list of the same length as the input that sums to 1).
- Formally: for a vector z of dimensionality k:

$$softmax(\mathbf{z}) = \left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \dots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)} \right]$$

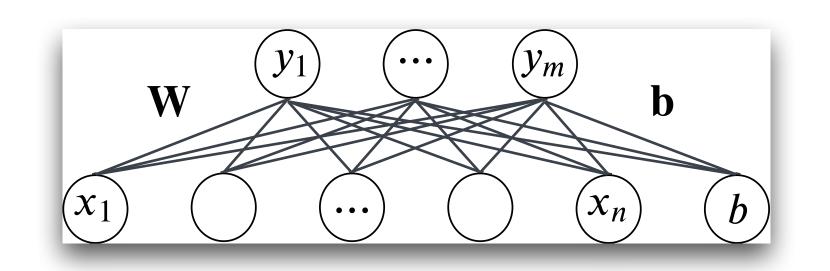
An example:

$$\mathbf{z} = [0.6, 1.1, -1.5, 1.2, 3.2] - 1.1]$$

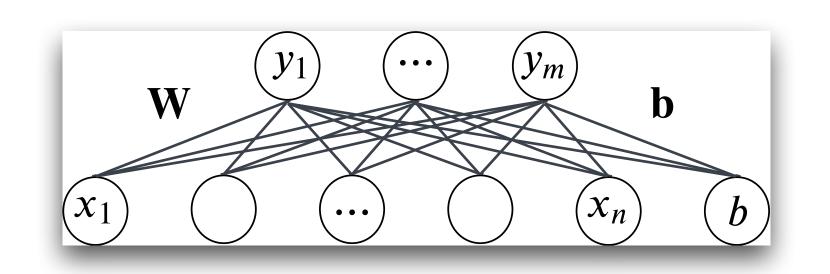
 $softmax(\mathbf{z}) = [0.055, 0.090, 0.006, 0.099, 0.74] 0.010]$



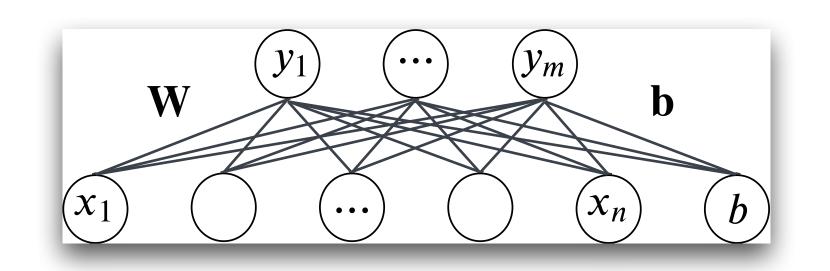
Representing a list of neurons



• Previously, we have only 1 neuron, so the weights are represented as a vector.



- Previously, we have only 1 neuron, so the weights are represented as a vector.
- Now, we have multiple neurons in the layer, and each neuron is connected to all the inputs, so we (naturally) need a matrix to represent the weights.



- Previously, we have only 1 neuron, so the weights are represented as a vector.
- Now, we have multiple neurons in the layer, and each neuron is connected to all the inputs, so we (naturally) need a matrix to represent the weights.
- Suppose we have 2 input features and 3 neurons:

\mathbf{w} \mathbf{v}_1 \mathbf{v}_m \mathbf{b} \mathbf{v}_n \mathbf{b}

- Previously, we have only 1 neuron, so the weights are represented as a vector.
- Now, we have multiple neurons in the layer, and each neuron is connected to all the inputs, so we (naturally) need a matrix to represent the weights.
- Suppose we have 2 input features and 3 neurons:

$$\begin{bmatrix} 0.1 & 1.0 \\ 2.0 & -0.1 \\ -0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \end{bmatrix} = \begin{bmatrix} 1.4 \times 0.1 + (-0.2) \times 1.0 \\ 1.4 \times 2.0 + (-0.2) \times (-0.1) \\ 1.4 \times (-0.3) + (-0.2) \times 0.5 \end{bmatrix} = \begin{bmatrix} -0.06 \\ 2.82 \\ -0.52 \end{bmatrix}$$

- Previously, we have only 1 neuron, so the weights are represented as a vector.
- Now, we have multiple neurons in the layer, and each neuron is connected to all the inputs, so we (naturally) need a matrix to represent the weights.
- Suppose we have 2 input features and 3 neurons:

Weight connecting 1.0 1.0 2.0 -0.1
$$\begin{bmatrix} 0.1 & 1.0 \\ 2.0 & -0.1 \\ -0.3 & 0.5 \end{bmatrix}$$
 $\begin{bmatrix} 1.4 \\ -0.2 \end{bmatrix} = \begin{bmatrix} 1.4 \times 0.1 + (-0.2) \times 1.0 \\ 1.4 \times 2.0 + (-0.2) \times (-0.1) \\ 1.4 \times (-0.3) + (-0.2) \times 0.5 \end{bmatrix} = \begin{bmatrix} -0.06 \\ 2.82 \\ -0.52 \end{bmatrix}$

$\mathbf{W} \qquad \mathbf{b} \qquad \mathbf{b}$

- Previously, we have only 1 neuron, so the weights are represented as a vector.
- Now, we have multiple neurons in the layer, and each neuron is connected to all the inputs, so we (naturally) need a matrix to represent the weights.
- Suppose we have 2 input features and 3 neurons:

Weight connecting 1.0 1.0 1.0 2.0 -0.1
$$\begin{bmatrix} 0.1 & 1.0 \\ 2.0 & -0.1 \\ -0.3 & 0.5 \end{bmatrix}$$

$$\begin{bmatrix} 1.4 \times 0.1 + (-0.2) \times 1.0 \\ 1.4 \times 2.0 + (-0.2) \times (-0.1) \\ 1.4 \times (-0.3) + (-0.2) \times 0.5 \end{bmatrix} = \begin{bmatrix} -0.06 \\ 2.82 \\ -0.52 \end{bmatrix}$$

\mathbf{w} \mathbf{w}

- Previously, we have only 1 neuron, so the weights are represented as a vector.
- Now, we have multiple neurons in the layer, and each neuron is connected to all the inputs, so we (naturally) need a matrix to represent the weights.
- Suppose we have 2 input features and 3 neurons:

Weight connecting 1.0 | 1.0 | 2.0 | -0.1 | -0.2 | =
$$\begin{bmatrix} 0.1 & 1.0 \\ 1.4 \times 0.1 + (-0.2) \times 1.0 \\ 1.4 \times 2.0 + (-0.2) \times (-0.1) \\ 1.4 \times (-0.3) + (-0.2) \times 0.5 \end{bmatrix} = \begin{bmatrix} -0.06 \\ 2.82 \\ -0.52 \end{bmatrix}$$
Weight connecting 2nd input to 3rd neuron

$\mathbf{W} \qquad \mathbf{b} \qquad \mathbf{b}$

- Previously, we have only 1 neuron, so the weights are represented as a vector.
- Now, we have multiple neurons in the layer, and each neuron is connected to all the inputs, so we (naturally) need a matrix to represent the weights.
- Suppose we have 2 input features and 3 neurons:

Weight connecting 1.0 | 1.0 | 2.0 | -0.1 | -0.2 | =
$$\begin{bmatrix} 1.4 \times 0.1 + (-0.2) \times 1.0 \\ 1.4 \times 2.0 + (-0.2) \times (-0.1) \\ 1.4 \times (-0.3) + (-0.2) \times 0.5 \end{bmatrix} = \begin{bmatrix} -0.06 \\ 2.82 \\ -0.52 \end{bmatrix}$$
Weight connecting 2nd input to 3rd neuron

\mathbf{w} \mathbf{w}

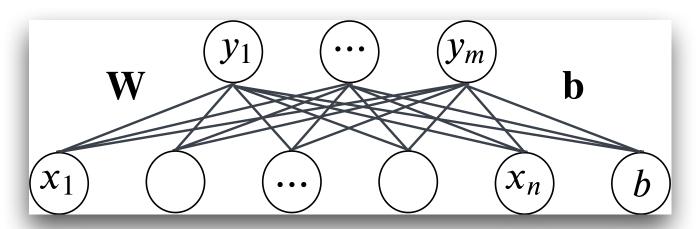
Representing a list of neurons

- Previously, we have only 1 neuron, so the weights are represented as a vector.
- Now, we have multiple neurons in the layer, and each neuron is connected to all the inputs, so we (naturally) need a matrix to represent the weights.
- Suppose we have 2 input features and 3 neurons:

Weight connecting 1st input to 1st neuron
$$\begin{bmatrix} 0.1 & 1.0 \\ 2.0 & -0.1 \\ -0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1.4 \times 0.1 + (-0.2) \times 1.0 \\ 1.4 \times 2.0 + (-0.2) \times (-0.1) \\ 1.4 \times (-0.3) + (-0.2) \times 0.5 \end{bmatrix} = \begin{bmatrix} -0.06 \\ 2.82 \\ -0.52 \end{bmatrix}$$
Weight connecting 2nd input to 3rd neuron

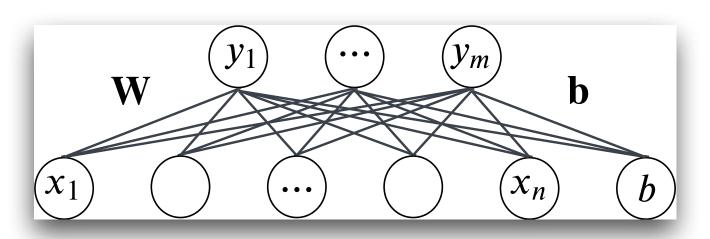
In general: position [i,j] in ${f W}$ is the weight connecting input j to neuron i.

Generalizing the Notations, cont. \int_{x_1}



Handling the Bias Term

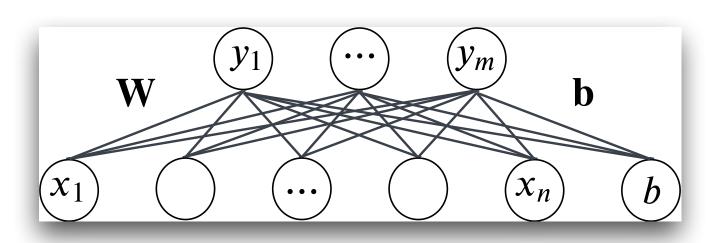
Generalizing the Notations, cont. $\sqrt[N]{x_1}$



Handling the Bias Term

$$\begin{bmatrix} 0.1 & 1.0 \\ 2.0 & -0.1 \\ -0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \end{bmatrix} + \begin{bmatrix} 0.2 \\ 1.0 \\ -0.3 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 3.82 \\ -0.82 \end{bmatrix}$$

$$\mathbf{W} \qquad \mathbf{x} \qquad \mathbf{b} \qquad \mathbf{W}\mathbf{x} + \mathbf{b}$$

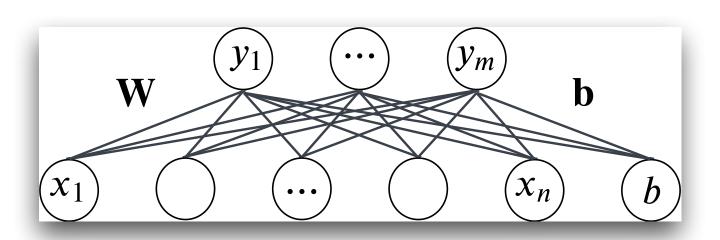


Handling the Bias Term

$$\begin{bmatrix} 0.1 & 1.0 \\ 2.0 & -0.1 \\ -0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \end{bmatrix} + \begin{bmatrix} 0.2 \\ 1.0 \\ -0.3 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 3.82 \\ -0.82 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.1 & 1.0 & 0.2 \\ 2.0 & -0.1 & 1.0 \\ -0.3 & 0.5 & -0.3 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \\ 1.0 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 3.82 \\ -0.82 \end{bmatrix}$$

$$\mathbf{W} \qquad \mathbf{x} \qquad \mathbf{b} \qquad \mathbf{W} \mathbf{x} + \mathbf{b} \qquad \mathbf{W} \qquad \mathbf{x} \qquad \mathbf{W} \mathbf{x} + \mathbf{b}$$

Generalizing the Notations, cont. $\sqrt[w]{x_1}$

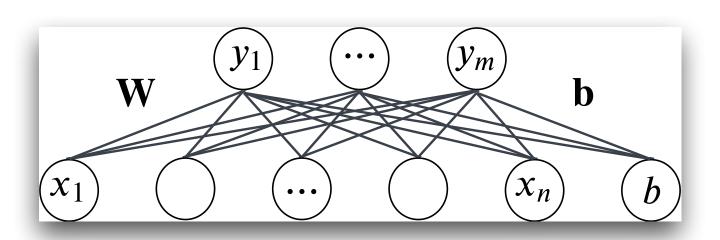


Handling the Bias Term

$$\begin{bmatrix} 0.1 & 1.0 \\ 2.0 & -0.1 \\ -0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \end{bmatrix} + \begin{bmatrix} 0.2 \\ 1.0 \\ -0.3 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 3.82 \\ -0.82 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.1 & 1.0 & 0.2 \\ 2.0 & -0.1 & 1.0 \\ -0.3 & 0.5 & -0.3 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \\ 1.0 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 3.82 \\ -0.82 \end{bmatrix}$$

$$\mathbf{W} \qquad \mathbf{x} \qquad \mathbf{b} \qquad \mathbf{W} \mathbf{x} + \mathbf{b} \qquad \mathbf{W} \qquad \mathbf{b} \qquad \mathbf{x} \qquad \mathbf{W} \mathbf{x} + \mathbf{b}$$

Generalizing the Notations, cont. $\int_{x_1}^{x_2}$

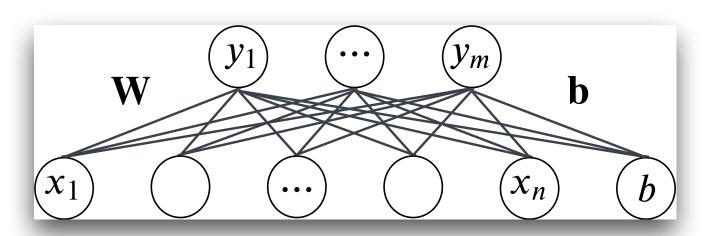


Handling the Bias Term

$$\begin{bmatrix} 0.1 & 1.0 \\ 2.0 & -0.1 \\ -0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \end{bmatrix} + \begin{bmatrix} 0.2 \\ 1.0 \\ -0.3 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 3.82 \\ -0.82 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.1 & 1.0 & 0.2 \\ 2.0 & -0.1 & 1.0 \\ -0.3 & 0.5 & -0.3 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \\ 1.0 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 3.82 \\ -0.82 \end{bmatrix}$$

$$\mathbf{W} \qquad \mathbf{x} \qquad \mathbf{b} \qquad \mathbf{W} \mathbf{x} + \mathbf{b} \qquad \mathbf{W} \qquad \mathbf{b} \qquad \mathbf{x} \qquad \mathbf{W} \mathbf{x} + \mathbf{b}$$

Generalizing the Notations, cont. $\int_{x_1}^{x_2}$



Handling the Bias Term

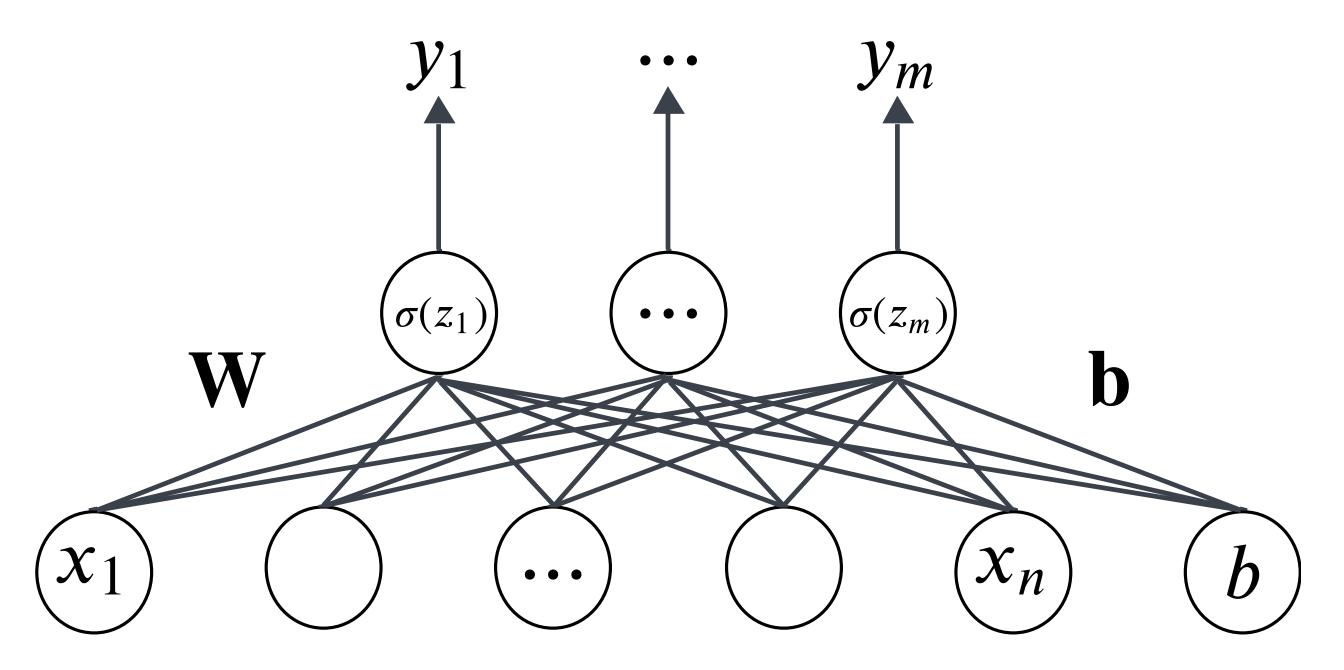
• As before, we incorporeate the bias vector \mathbf{b} into \mathbf{W} and \mathbf{x} by adding a constant value 1 into the input vector, as follows:

$$\begin{bmatrix} 0.1 & 1.0 \\ 2.0 & -0.1 \\ -0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \end{bmatrix} + \begin{bmatrix} 0.2 \\ 1.0 \\ -0.3 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 3.82 \\ -0.82 \end{bmatrix} \longrightarrow \begin{bmatrix} 0.1 & 1.0 & 0.2 \\ 2.0 & -0.1 & 1.0 \\ -0.3 & 0.5 & -0.3 \end{bmatrix} \begin{bmatrix} 1.4 \\ -0.2 \\ 1.0 \end{bmatrix} = \begin{bmatrix} 0.14 \\ 3.82 \\ -0.82 \end{bmatrix}$$

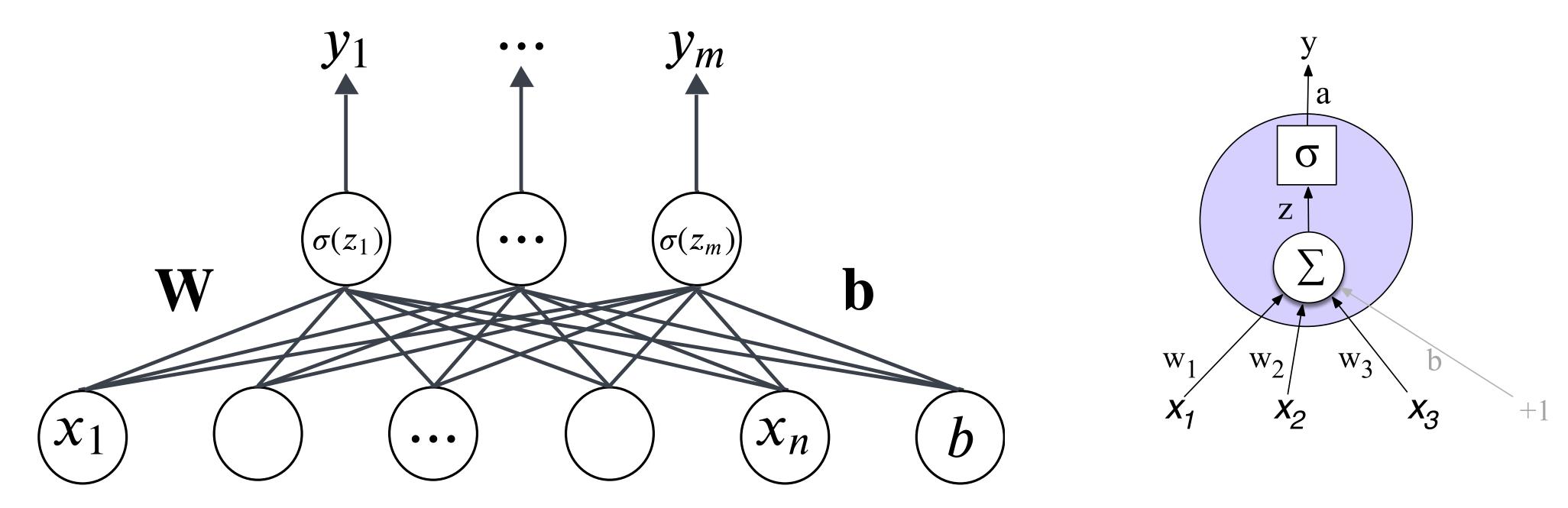
$$\mathbf{W} \qquad \mathbf{x} \qquad \mathbf{b} \qquad \mathbf{W} \mathbf{x} + \mathbf{b} \qquad \mathbf{W} \qquad \mathbf{b} \qquad \mathbf{x} \qquad \mathbf{W} \mathbf{x} + \mathbf{b}$$

Add ${f b}$ as another column of ${f W}$, and stick a 1 to the input vector ${f x}$.

Folding the nonlinear transformation into the neurons

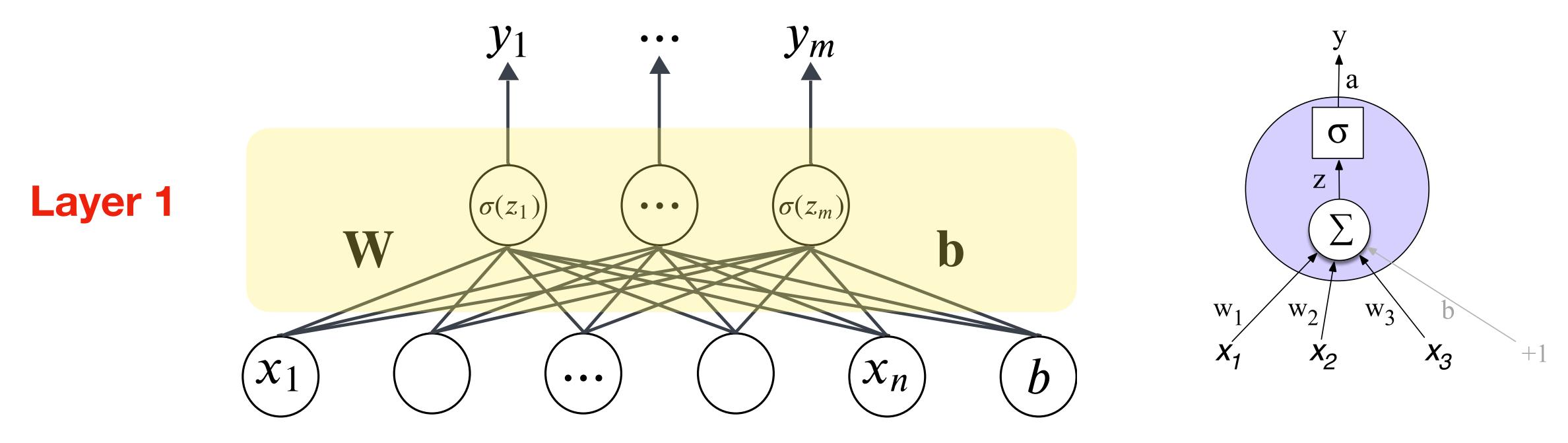


Folding the nonlinear transformation into the neurons



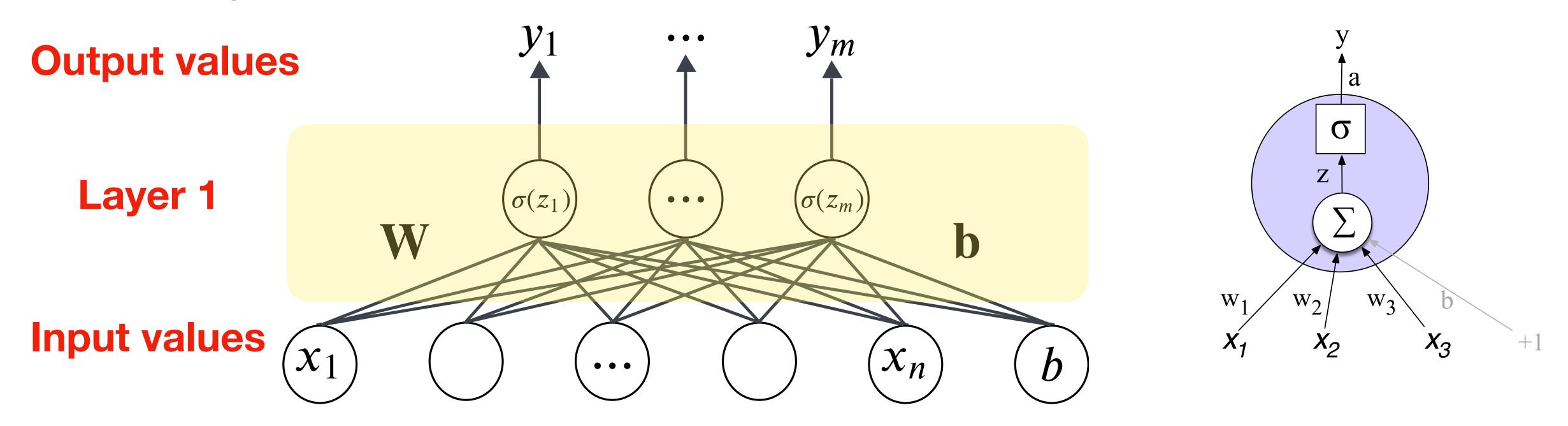
• A neuron in a neural network computes the linearly transformed weighted sum: $f(\mathbf{W}\mathbf{x} + \mathbf{b})$, where f can be softmax, sigmoid, ReLU, tanh, etc.

Folding the nonlinear transformation into the neurons



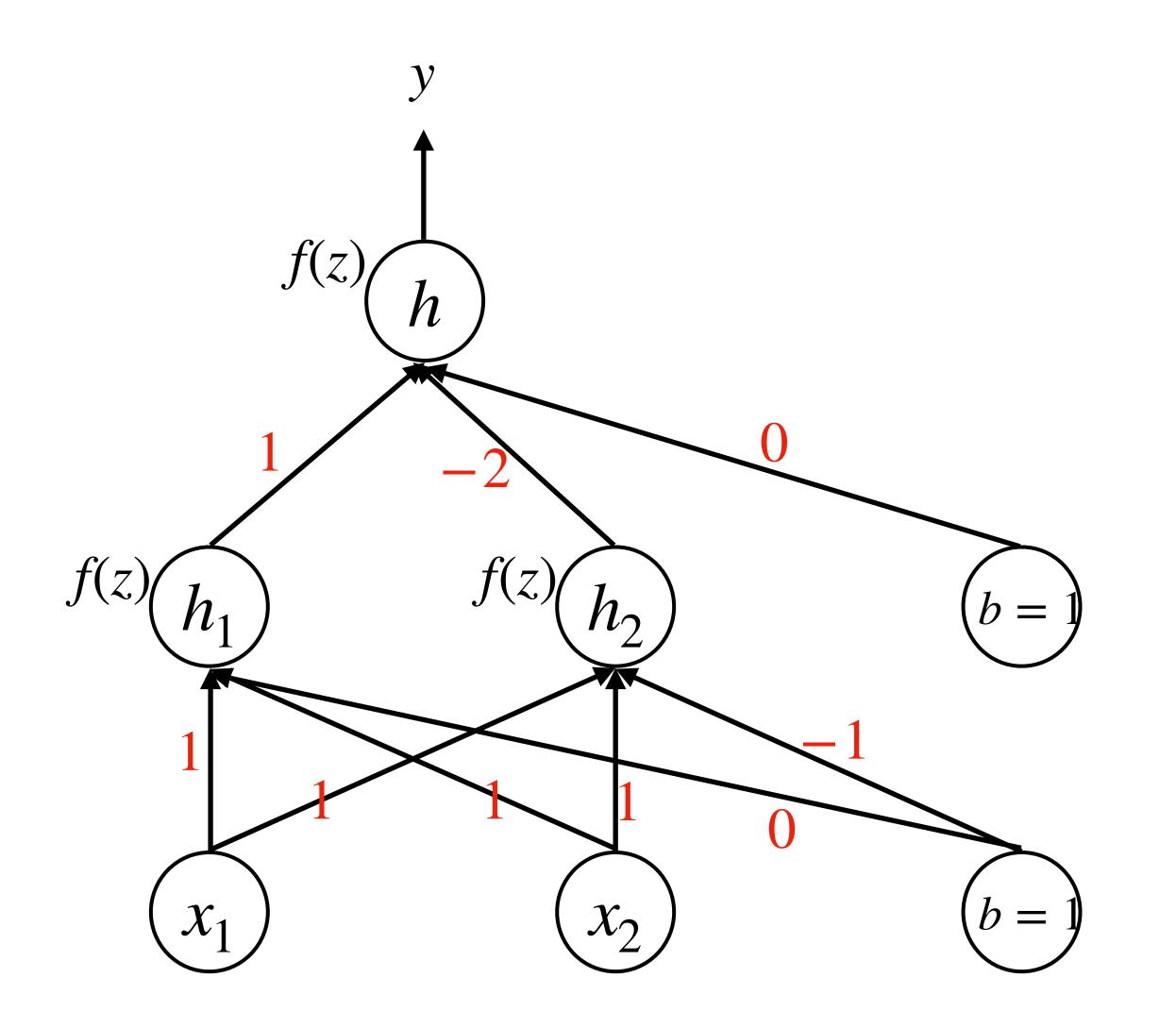
- A neuron in a neural network computes the linearly transformed weighted sum: $f(\mathbf{W}\mathbf{x} + \mathbf{b})$, where f can be softmax, sigmoid, ReLU, tanh, etc.
- A layer is a list of neurons, defined by W, b, and the nonlinear transformation.

Folding the nonlinear transformation into the neurons



- A neuron in a neural network computes the linearly transformed weighted sum: $f(\mathbf{W}\mathbf{x} + \mathbf{b})$, where f can be softmax, sigmoid, ReLU, tanh, etc.
- A layer is a list of neurons, defined by W, b, and the nonlinear transformation.
- Input nodes (x) don't count as a layer; and output values also don't.

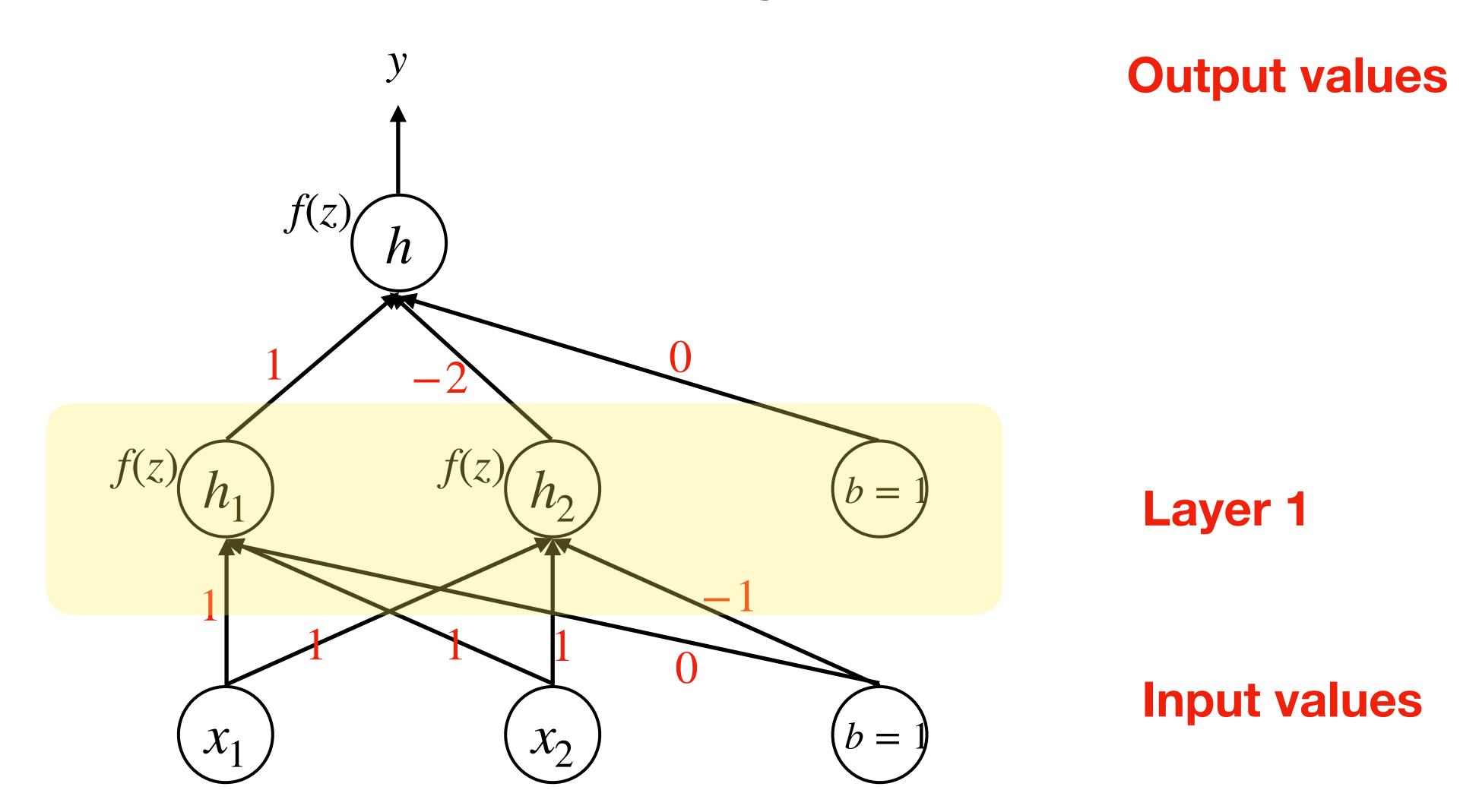
Our XOR network is a two-layer neural network:



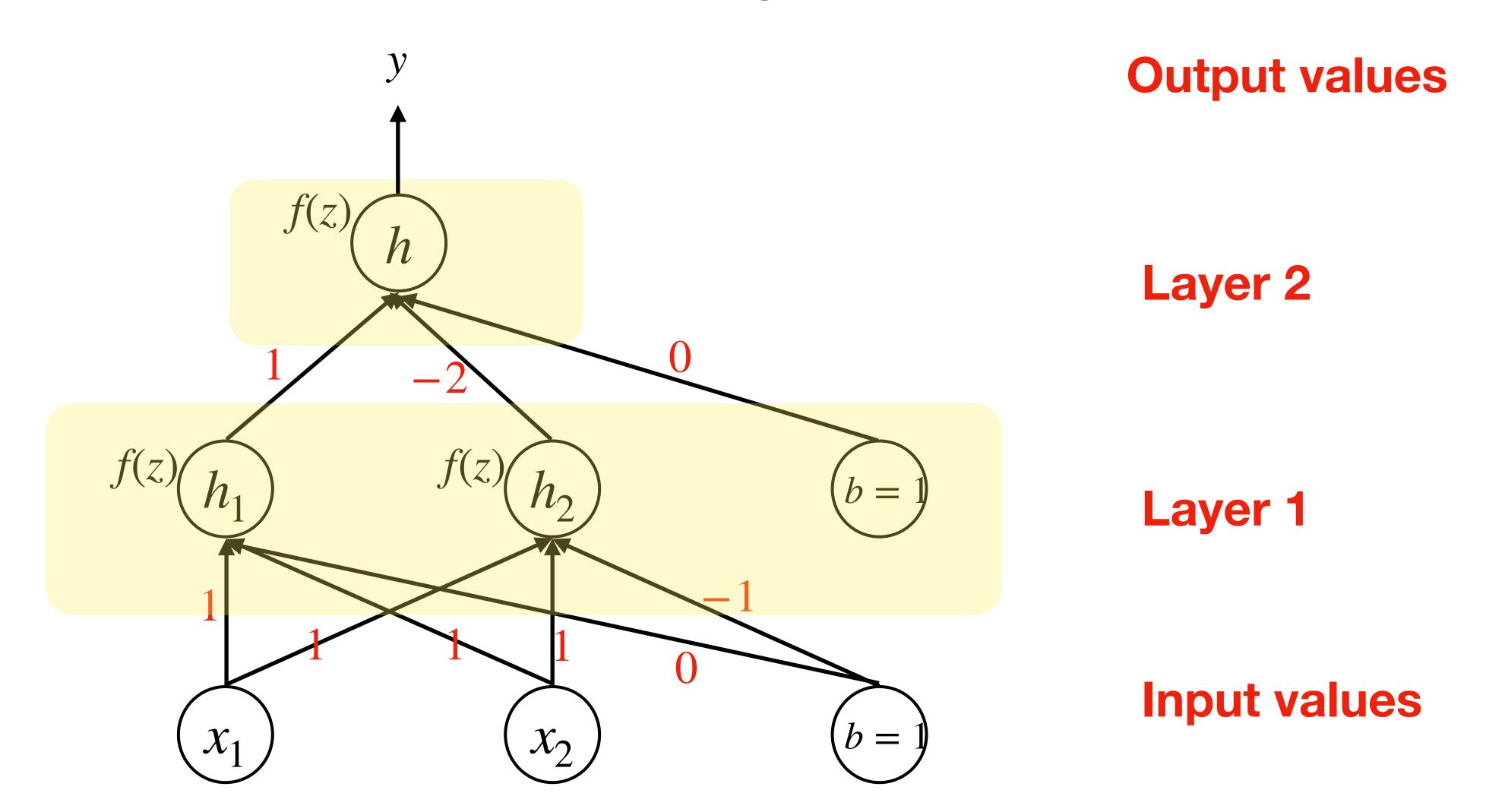
Output values

Input values

Our XOR network is a two-layer neural network:



Our XOR network is a two-layer neural network:

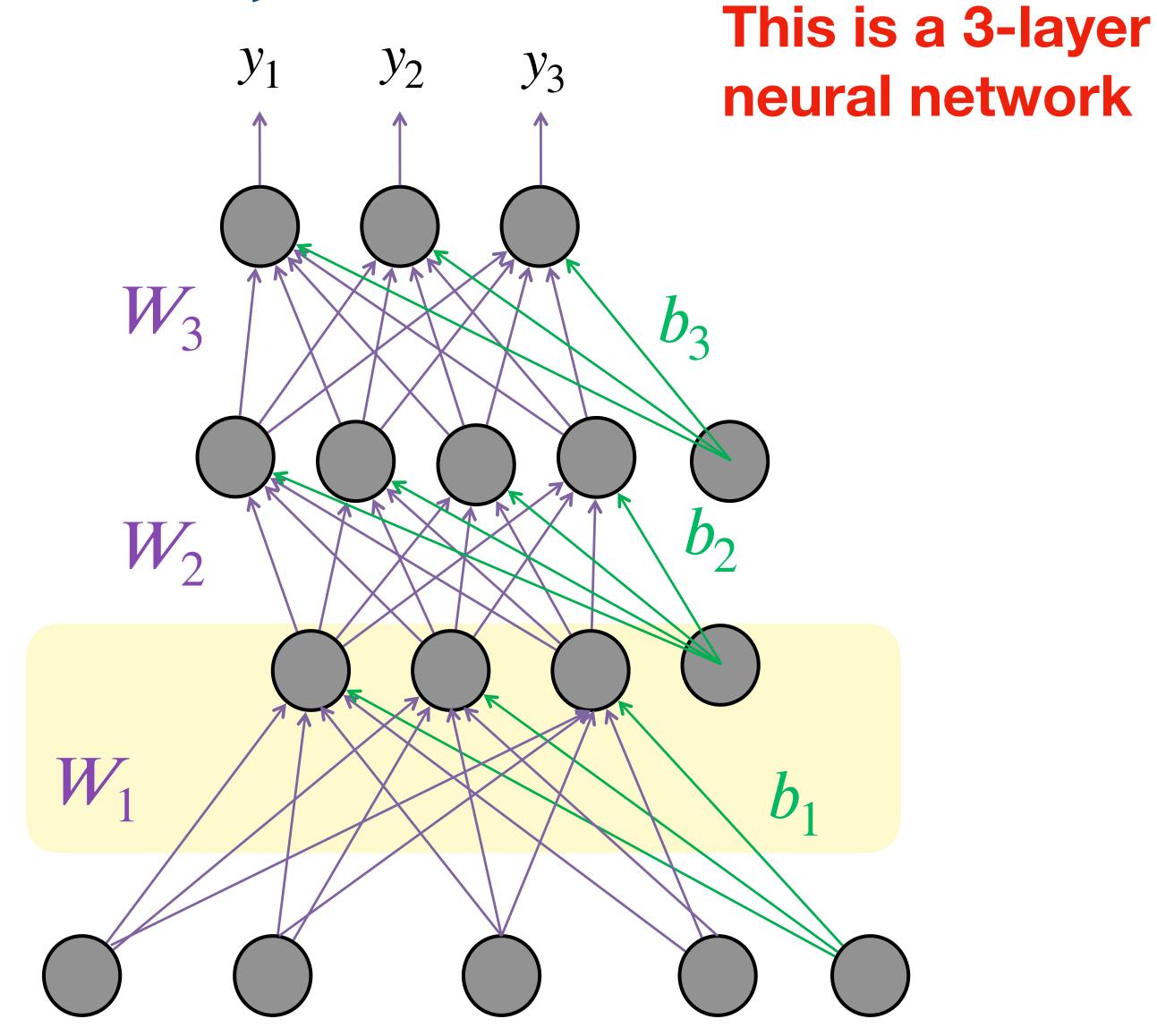


Multi-layer Neural Networks

This is a 3-layer neural network W_2

Multi-layer Neural Networks

Hidden state \mathbf{h}_1 (vector) $\mathbf{h}_1 = ReLU(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$



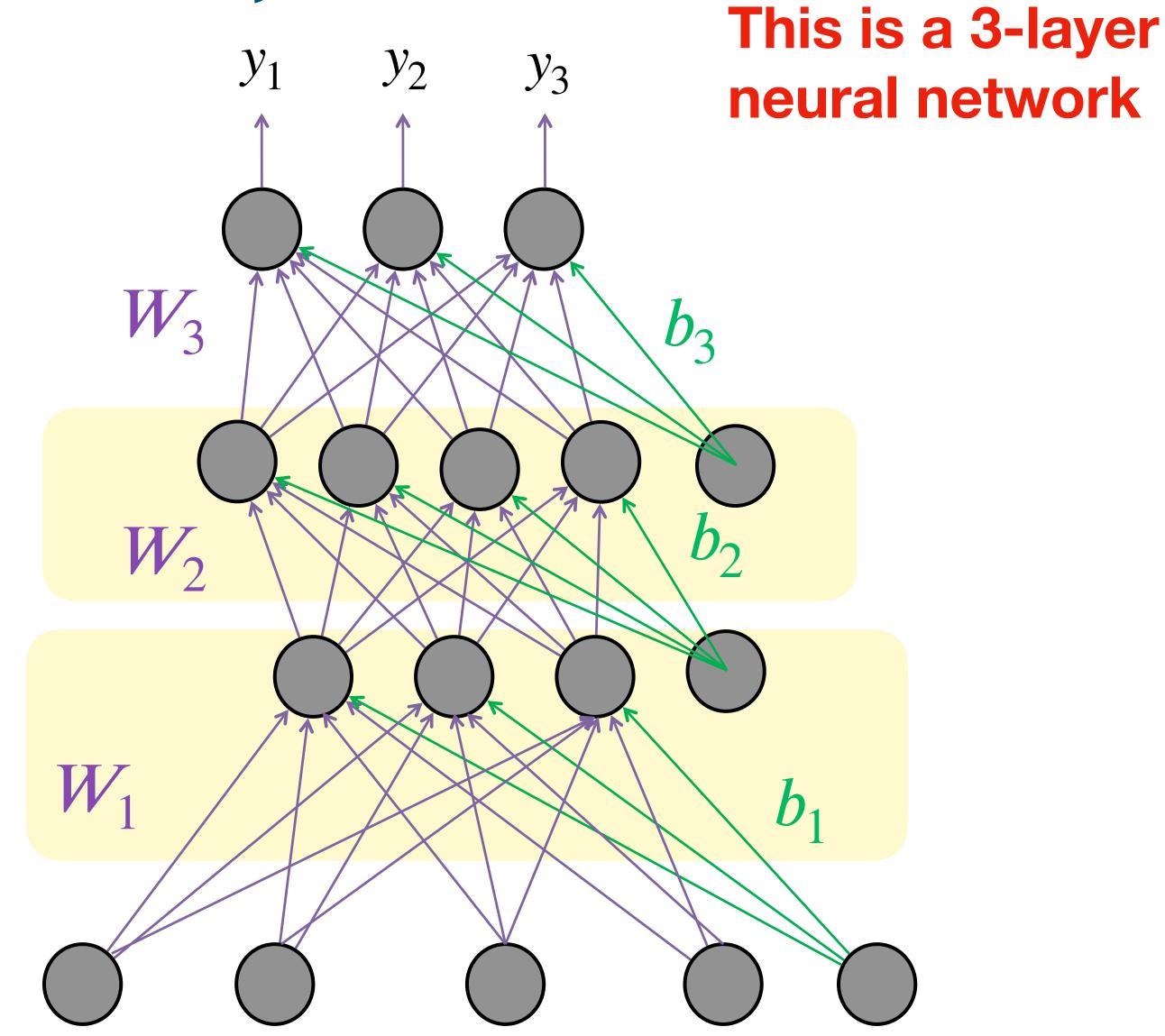
Multi-layer Neural Networks

Hidden state h_2 (vector)

$$\mathbf{h_2} = ReLU(\mathbf{W_2h_1} + \mathbf{b_2})$$

Hidden state h₁ (vector)

$$\mathbf{h}_1 = ReLU(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$



Multi-layer Neural Networks

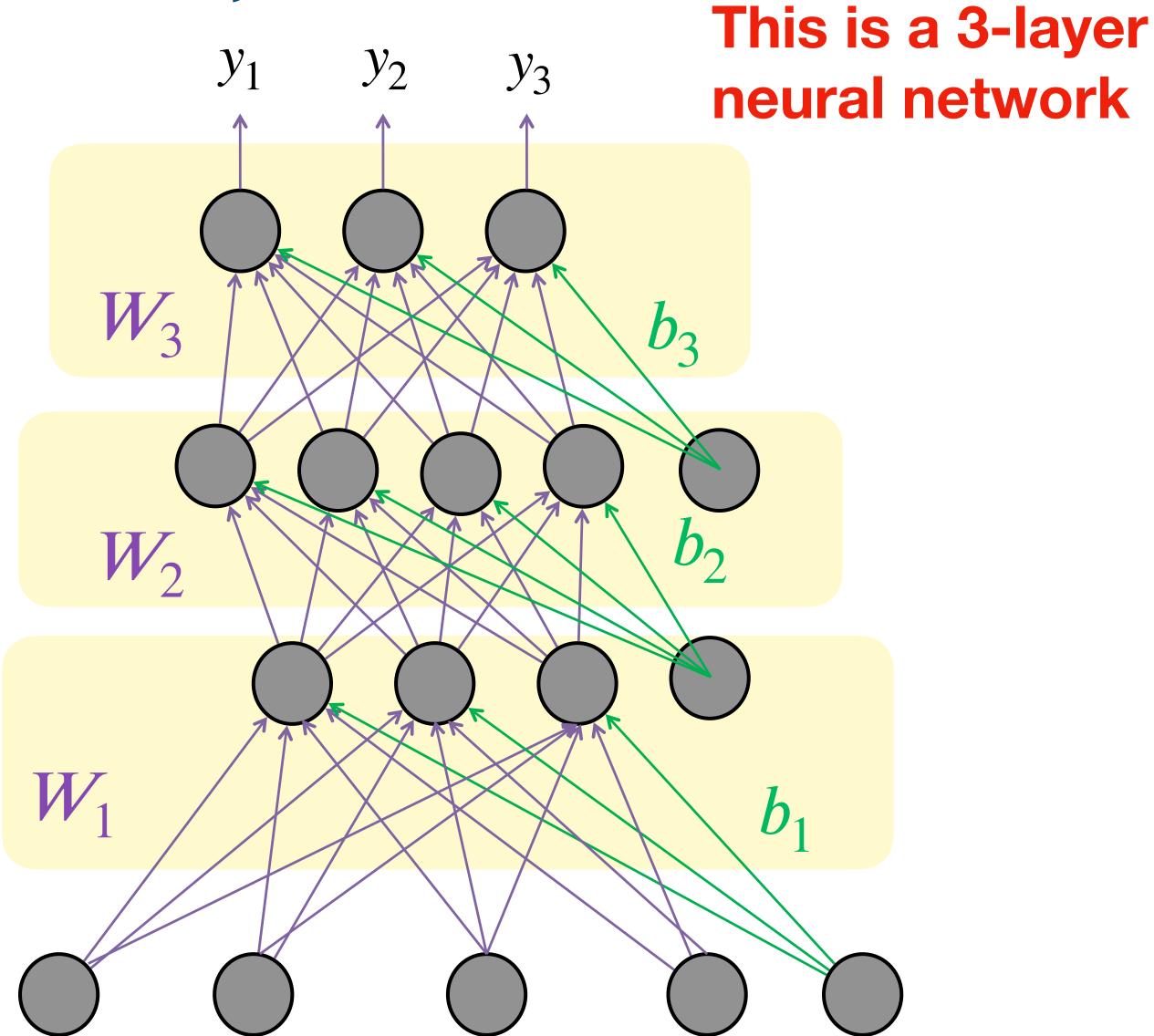
$$\mathbf{y} = softmax(\mathbf{W_3h_2} + \mathbf{b_3})$$

Hidden state h_2 (vector)

$$-\mathbf{h}_2 = ReLU(\mathbf{W}_2\mathbf{h}_1 + \mathbf{b}_2)$$

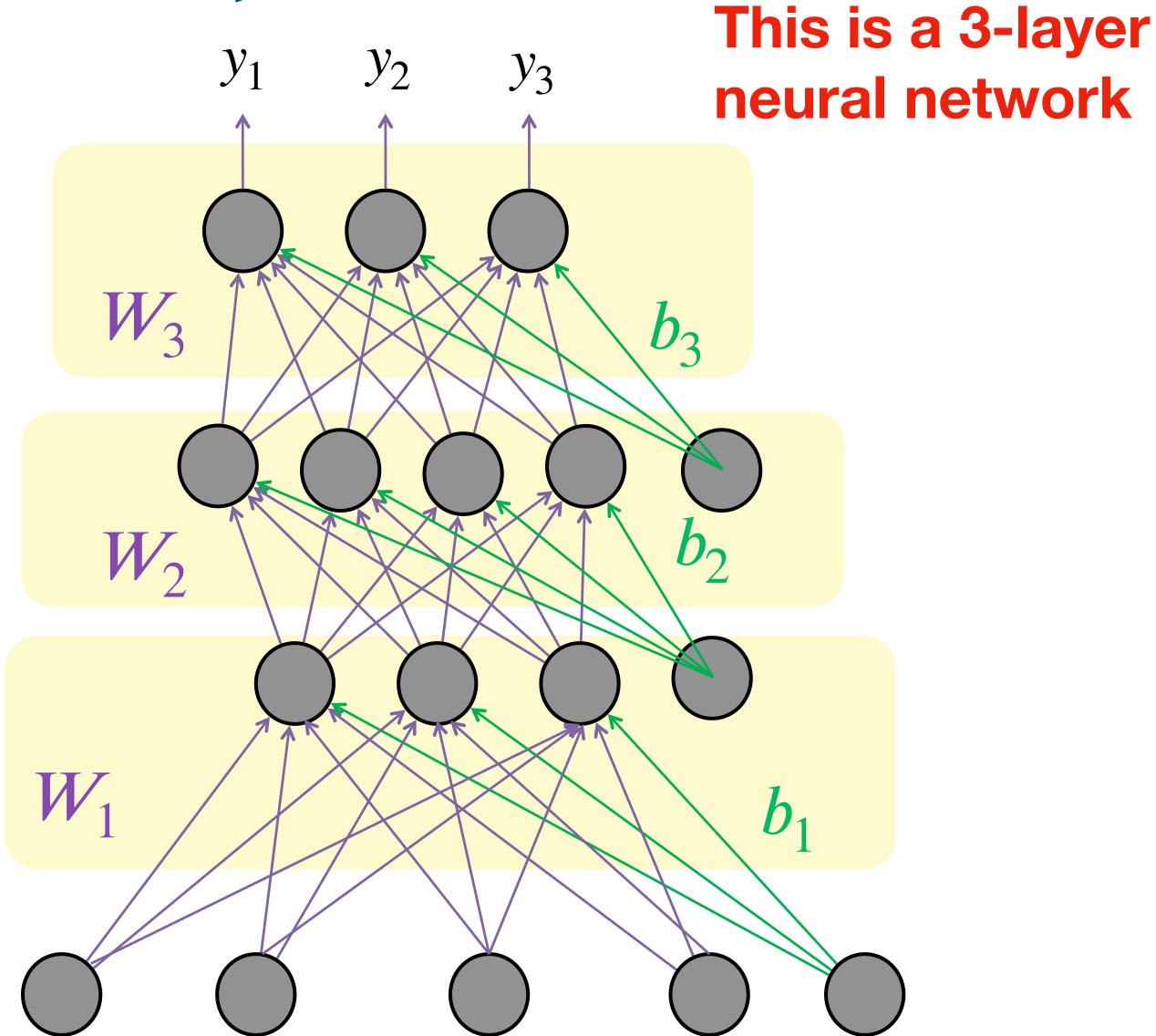
Hidden state h₁ (vector)

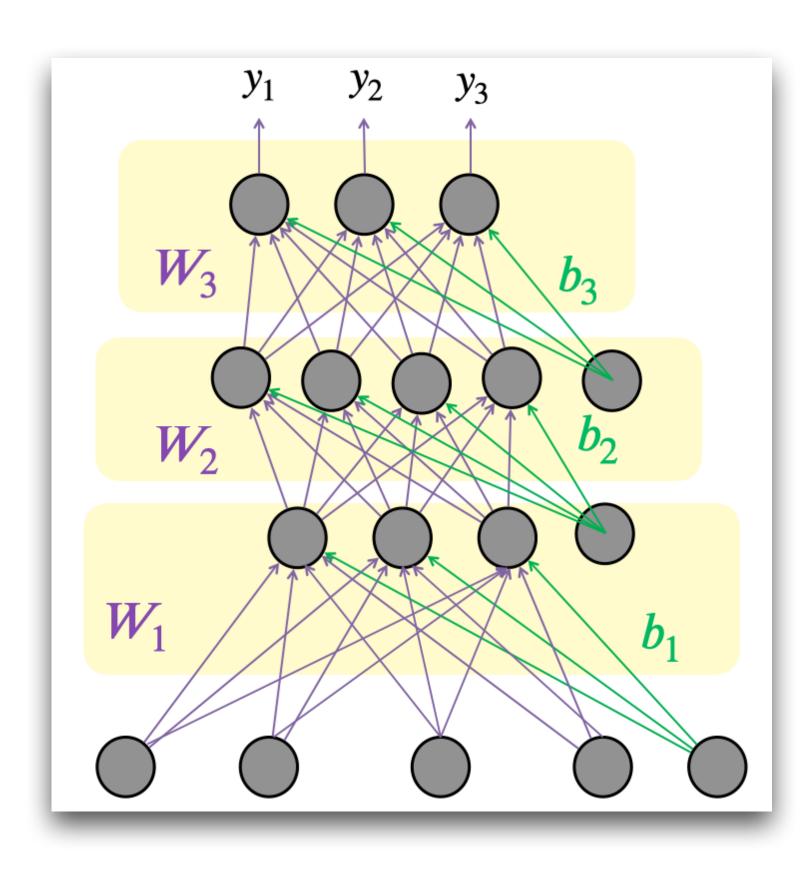
$$\mathbf{h_1} = ReLU(\mathbf{W_1}\mathbf{x} + \mathbf{b_1})$$



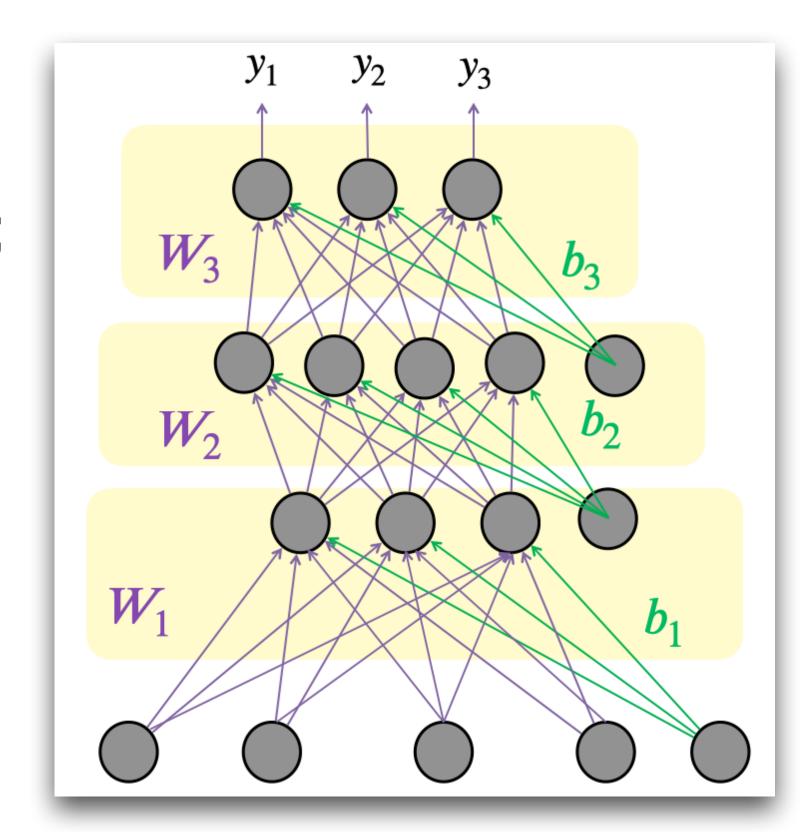
Multi-layer Neural Networks

Output y (vector)
$$y = softmax(W_3h_2 + b_3)$$
Hidden state h_2 (vector)
$$h_2 = ReLU(W_2h_1 + b_2)$$
Hidden state h_1 (vector)
$$h_1 = ReLU(W_1x + b_1)$$

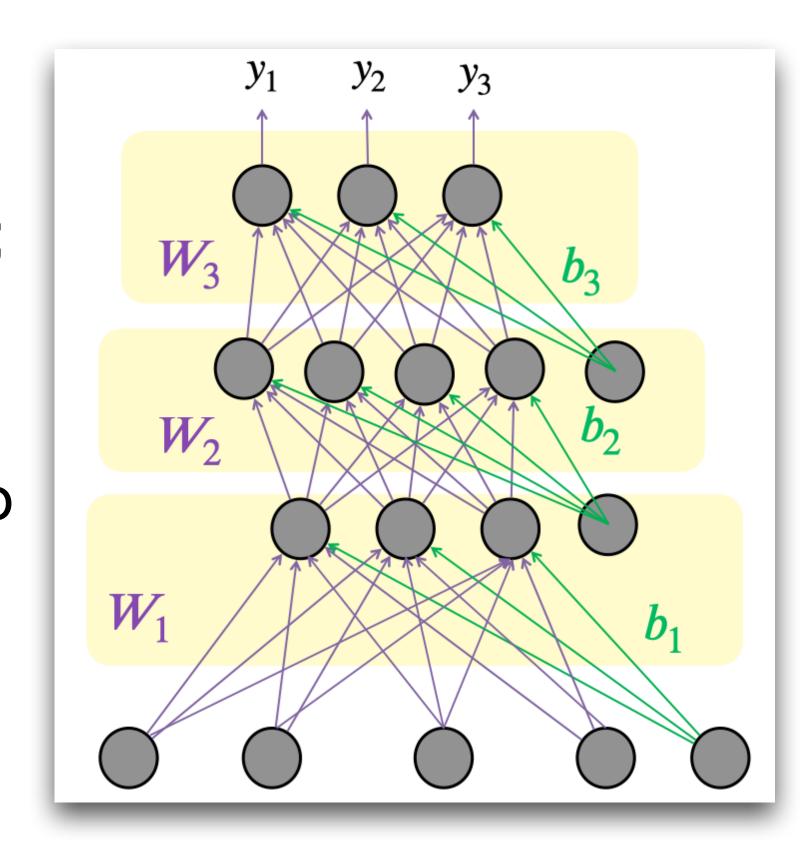




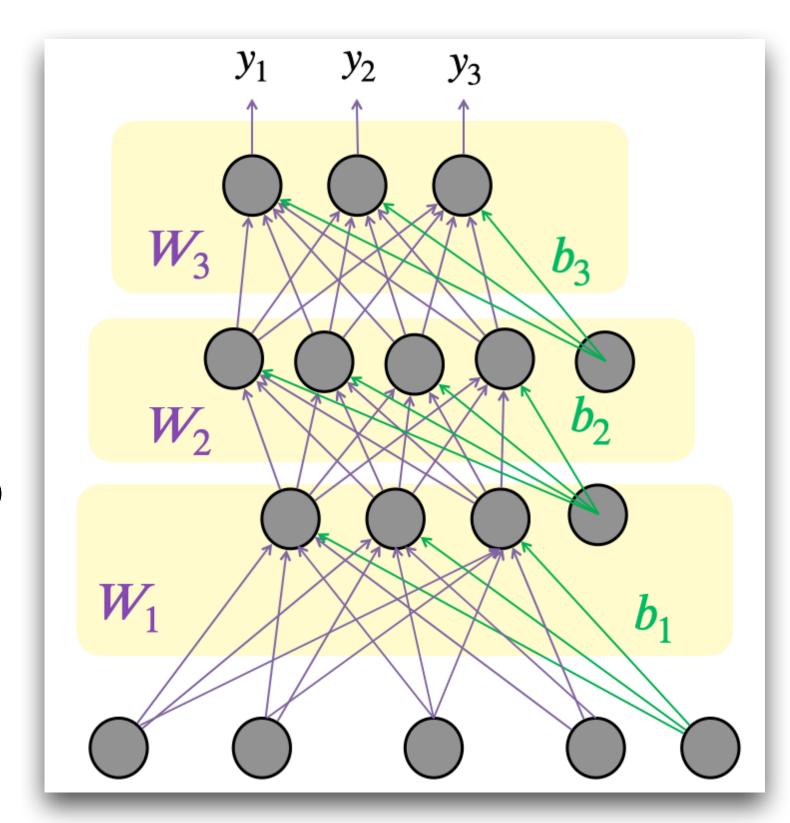
- Feedforward Neural Network (FFNN)
 - * Because layers are feeding foward to each other the output of layer l becomes the input of layer l+1;



- Feedforward Neural Network (FFNN)
 - * Because layers are feeding foward to each other the output of layer l becomes the input of layer l+1;
- Fully-connected Neural Network (FCNN)
 - * From layer l to layer l+1, all nodes are connected to all other nodes;



- Feedforward Neural Network (FFNN)
 - * Because layers are feeding foward to each other the output of layer l becomes the input of layer l+1;
- Fully-connected Neural Network (FCNN)
 - * From layer l to layer l+1, all nodes are connected to all other nodes;
- Multi-layer Perceptron (MLP)
 - * This generalizes a single-neuron Perceptron into a multi-neuron, multi-layer network



More generally, at the field level

More generally, at the field level

- Connectionist Models
 - * Named after the school of thought "connectionism" (vs. "symbolism);

More generally, at the field level

- Connectionist Models
 - * Named after the school of thought "connectionism" (vs. "symbolism);
- Parallel Distributed Processing (PDP)
 - * Each input is multiplied by a weight, and such computations are independent from each other, thus can be done in parallel / simultaneously.

More generally, at the field level

Connectionist Models

* Named after the school of thought "connectionism" (vs. "symbolism);

Parallel Distributed Processing (PDP)

* Each input is multiplied by a weight, and such computations are independent from each other, thus can be done in parallel / simultaneously.

Deep Learning

* Recent branding for neural networks with many layers;

A significant upgrade

A significant upgrade

1-layer Perceptrons are very limited;

A significant upgrade

- 1-layer Perceptrons are very limited;
- But having one more layer makes it much more powerful!

A significant upgrade

- 1-layer Perceptrons are very limited;
- But having one more layer makes it much more powerful!
- In fact, a 2-layer perceptron can approximate any function to an arbitrary degree of precision!
 - This is an "in principle" claim;
 - Assumes arbitrarily large layers (i.e., infinite neurons);

Multilayer Feedforward Networks are Universal Approximators

Kur' Hornik

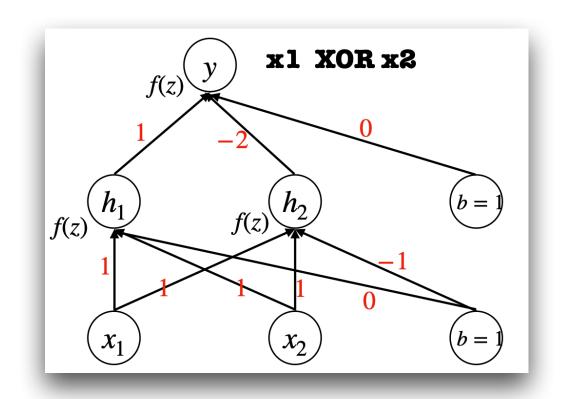
Technische Universität Wien

MAXWELL STINCHCOMBE AND HALBER WHITE

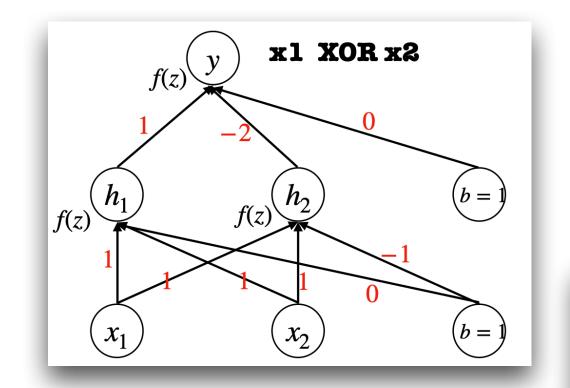
University of California, San Diego

(Received 16 September 1988; revised and accepted 9 March 1989)

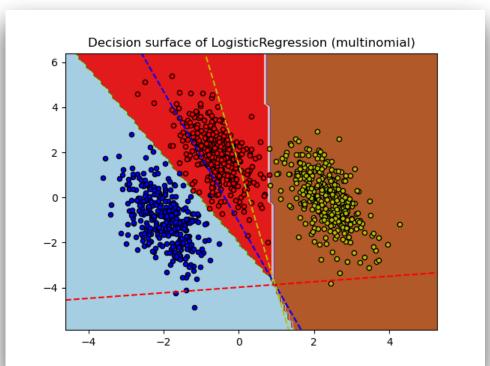
From individual neurons to networks

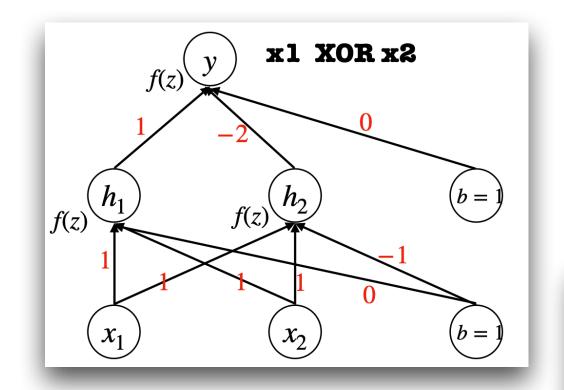


• Multi-layer perceptron / Neural networks can handle XOR.

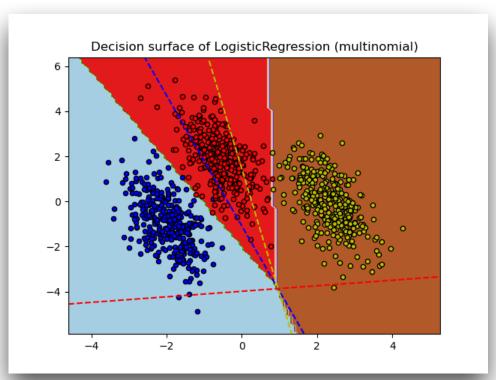


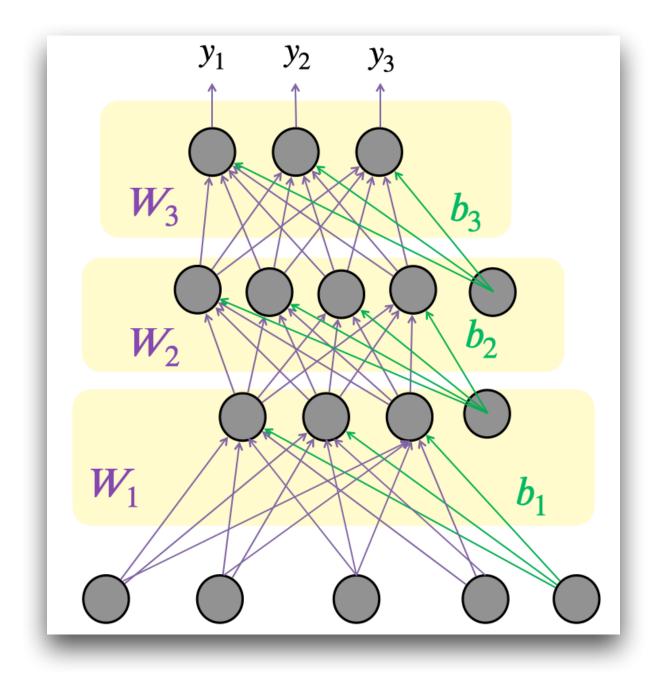
- Multi-layer perceptron / Neural networks can handle XOR.
- Multinomial logistic regressoin is a specific version of neural networks;

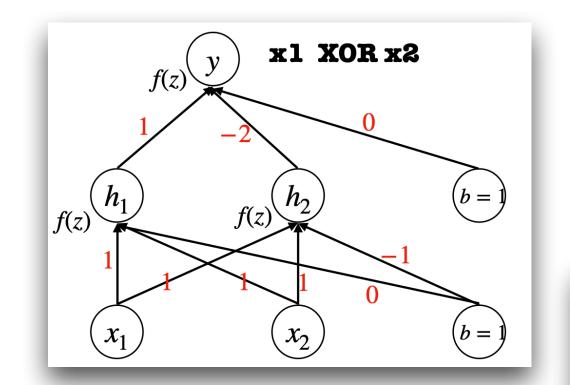




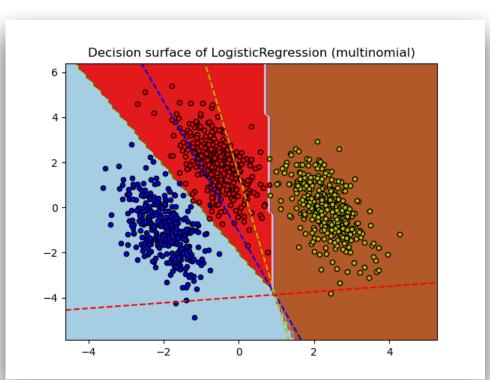
- Multi-layer perceptron / Neural networks can handle XOR.
- Multinomial logistic regressoin is a specific version of neural networks;
- We use matrix and vector notations to represent neural networks of arbitrary depths;

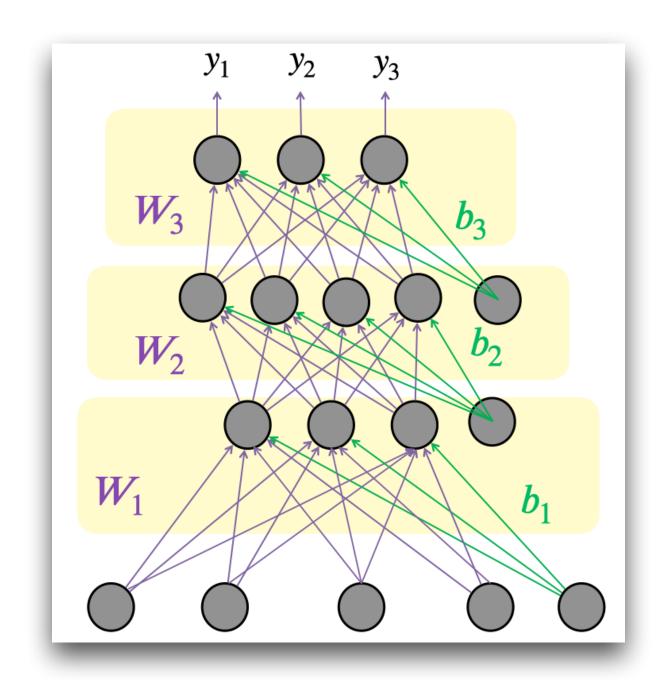






- Multi-layer perceptron / Neural networks can handle XOR.
- Multinomial logistic regressoin is a specific version of neural networks;
- We use matrix and vector notations to represent neural networks of arbitrary depths;
- Neural networks that have more than 1 layers is ARBITRARILY EXPRESSIVE in principle: they can approximate any function given arbitrarily many neurons;





Back Propagation & Gradient Descent 1974 (first proposed) & 1986 (polularized)

Error-based Learning as the secret sauce

• Remember the perceptron learning rule: $\mathbf{w} := \mathbf{w} + \eta(y - \hat{y})\mathbf{x}$

- Remember the perceptron learning rule: $\mathbf{w} := \mathbf{w} + \eta(y \hat{y})\mathbf{x}$
 - Roughly: update each weight proportional to the error (i.e., the loss between predicted \hat{y} and true label y).

- Remember the perceptron learning rule: $\mathbf{w} := \mathbf{w} + \eta(y \hat{y})\mathbf{x}$
 - Roughly: update each weight proportional to the error (i.e., the loss between predicted \hat{y} and true label y).
- How to do it for a neural network? How to compute the error across multiple layers?

- Remember the perceptron learning rule: $\mathbf{w} := \mathbf{w} + \eta(y \hat{y})\mathbf{x}$
 - Roughly: update each weight proportional to the error (i.e., the loss between predicted \hat{y} and true label y).
- How to do it for a neural network? How to compute the error across multiple layers?
 - Assume we have some loss function that compute the difference between two vectors: $L(\hat{y} y)$

- Remember the perceptron learning rule: $\mathbf{w} := \mathbf{w} + \eta(y \hat{y})\mathbf{x}$
 - Roughly: update each weight proportional to the error (i.e., the loss between predicted \hat{y} and true label y).
- How to do it for a neural network? How to compute the error across multiple layers?
 - Assume we have some loss function that compute the difference between two vectors: $L(\hat{y} y)$
 - Goal = to derive gradient descent with the help of backpropagation!

- Remember the perceptron learning rule: $\mathbf{w} := \mathbf{w} + \eta(y \hat{y})\mathbf{x}$
 - Roughly: update each weight proportional to the error (i.e., the loss between predicted \hat{y} and true label y).
- How to do it for a neural network? How to compute the error across multiple layers?
 - Assume we have some loss function that compute the difference between two vectors: $L(\hat{y} y)$
 - Goal = to derive gradient descent with the help of backpropagation!

Update each weight:
$$w' = w - \eta \frac{d}{dw} L(f(x; w), y)$$
, where $L(f(x; w), y) = L(\hat{y} - y)$

Representing the procedure of the computation

Representing the procedure of the computation

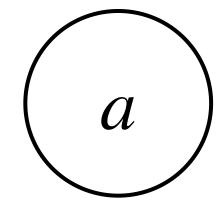
- For training, we need the derivative of the loss with respect to each weight in every layer of the network;
 - But the loss is computed only at the very end of the network....
 - How do we know how much a weight at Layer 1 contribute the final loss?

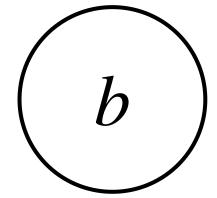
Representing the procedure of the computation

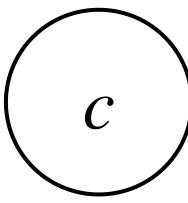
- For training, we need the derivative of the loss with respect to each weight in every layer of the network;
 - But the loss is computed only at the very end of the network....
 - How do we know how much a weight at Layer 1 contribute the final loss?
- Solution = represent the computation of the entire neural network with a (very big) computation graph!
 - A computation graph represents the entire process of computing a function (which can be a very complex composition of multiple functions) representing the dependencies between any two steps of the computation.

- Say, here is a dummy loss function with 3 inputs: L(a, b, c) = c(a + 2b)
- In a computation graph: a **node** represents a value, and an **edge** represents a function / arithmetic operation / computation.
- Try to construct a computation graph for L!

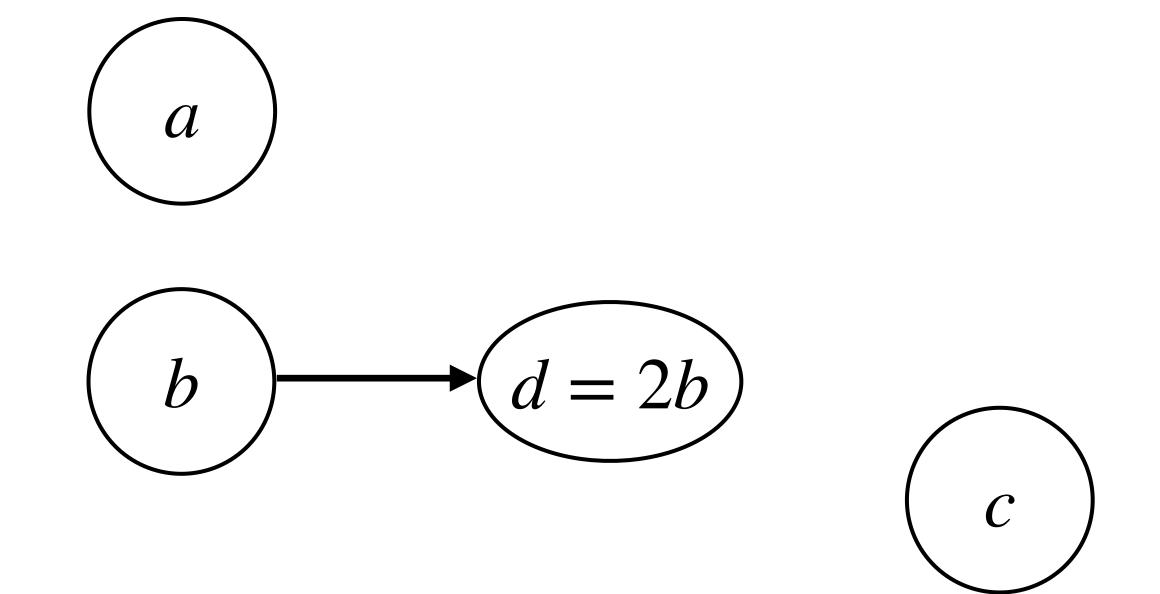
- Say, here is a dummy loss function with 3 inputs: L(a, b, c) = c(a + 2b)
- In a computation graph: a **node** represents a value, and an **edge** represents a function / arithmetic operation / computation.
- Try to construct a computation graph for L!



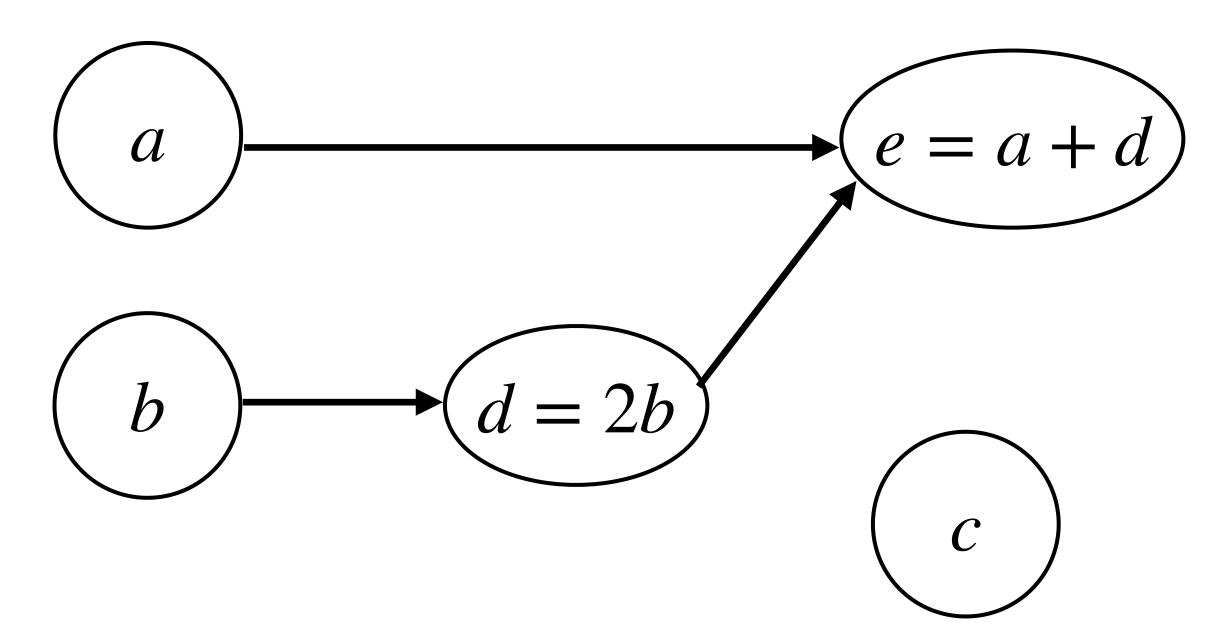




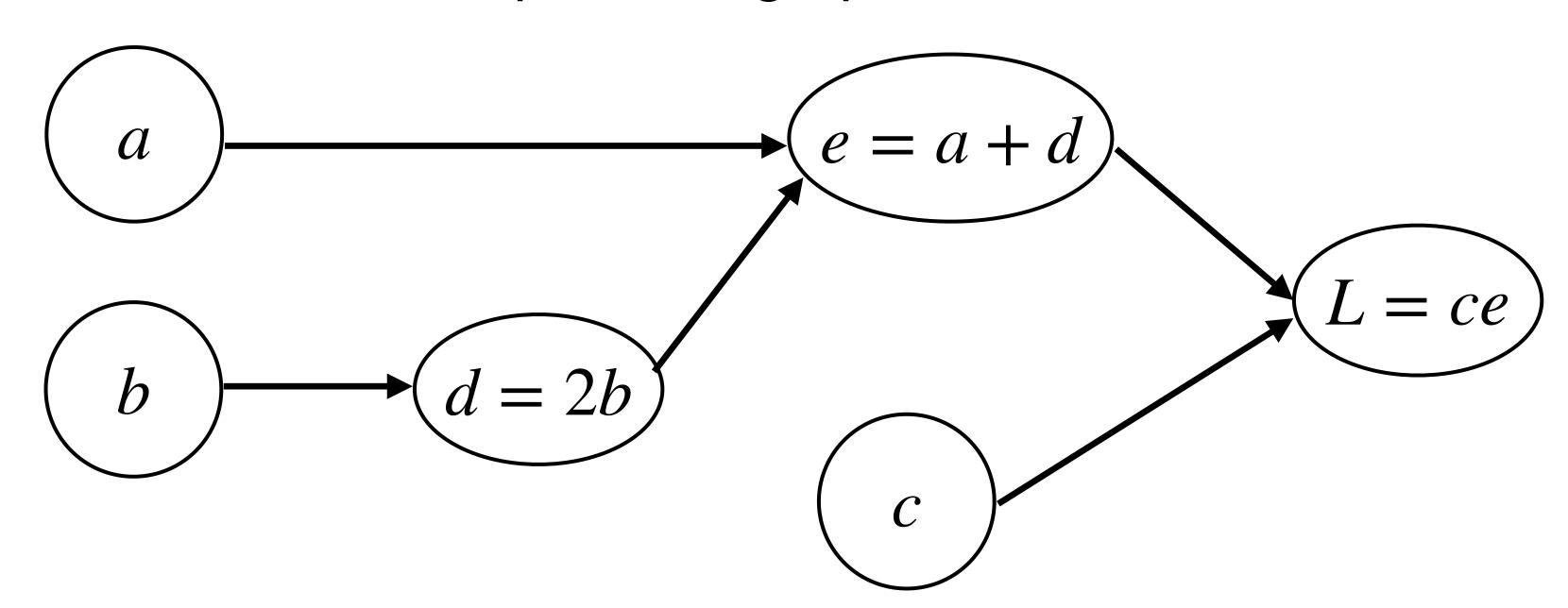
- Say, here is a dummy loss function with 3 inputs: L(a, b, c) = c(a + 2b)
- In a computation graph: a **node** represents a value, and an **edge** represents a function / arithmetic operation / computation.
- Try to construct a computation graph for L!



- Say, here is a dummy loss function with 3 inputs: L(a, b, c) = c(a + 2b)
- In a computation graph: a **node** represents a value, and an **edge** represents a function / arithmetic operation / computation.
- Try to construct a computation graph for L!

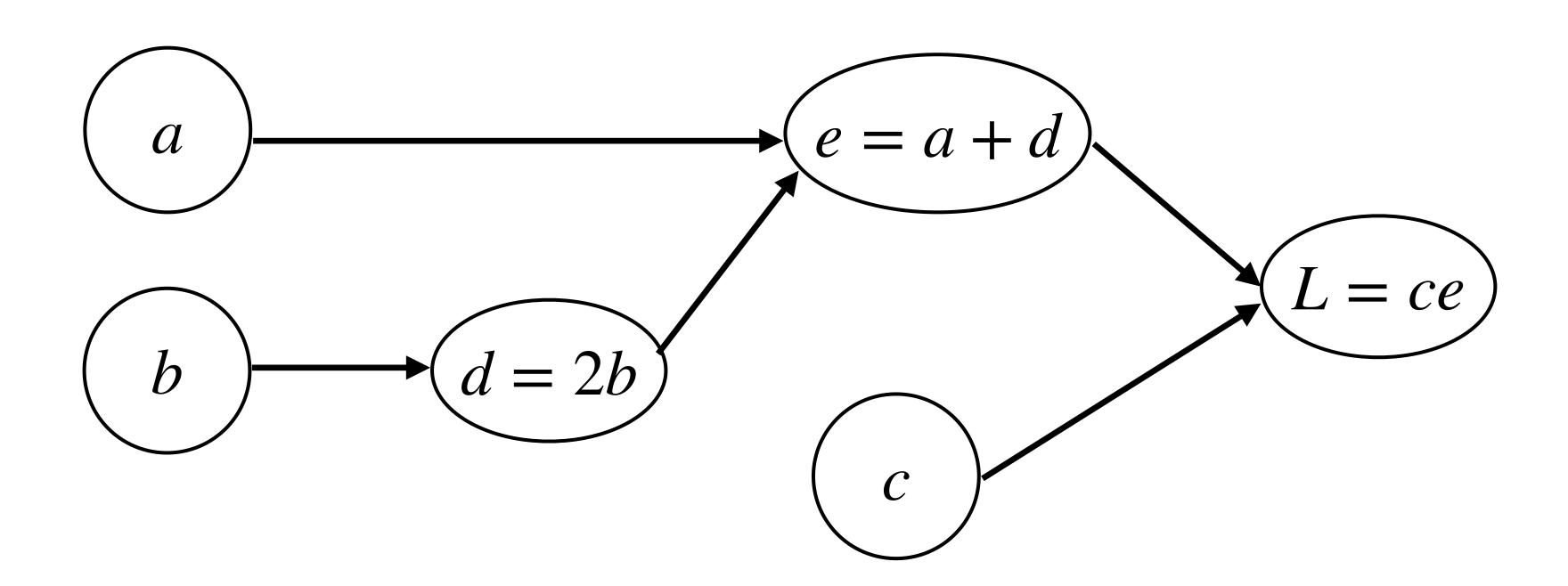


- Say, here is a dummy loss function with 3 inputs: L(a, b, c) = c(a + 2b)
- In a computation graph: a **node** represents a value, and an **edge** represents a function / arithmetic operation / computation.
- Try to construct a computation graph for L!



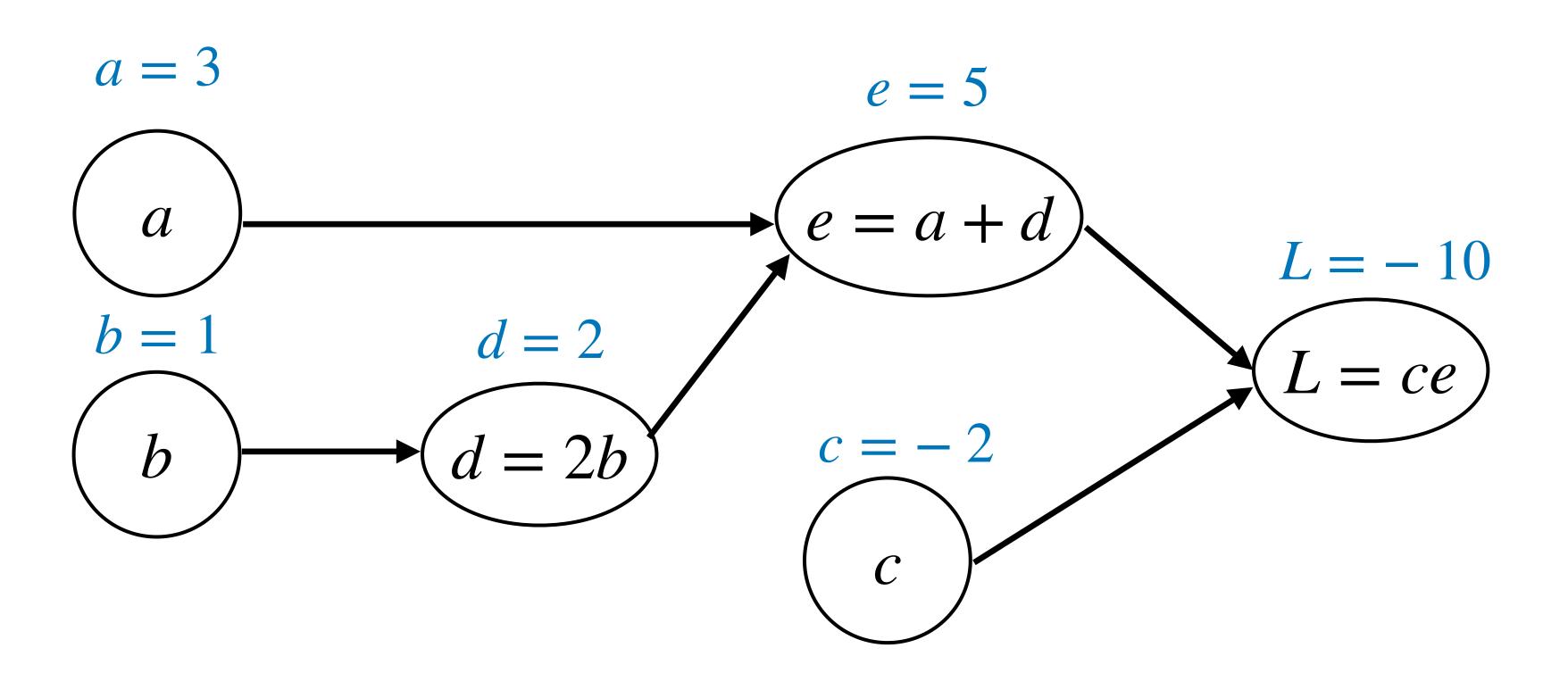
[Exercise] Try to construct a computation graph for a simple equation

• L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2



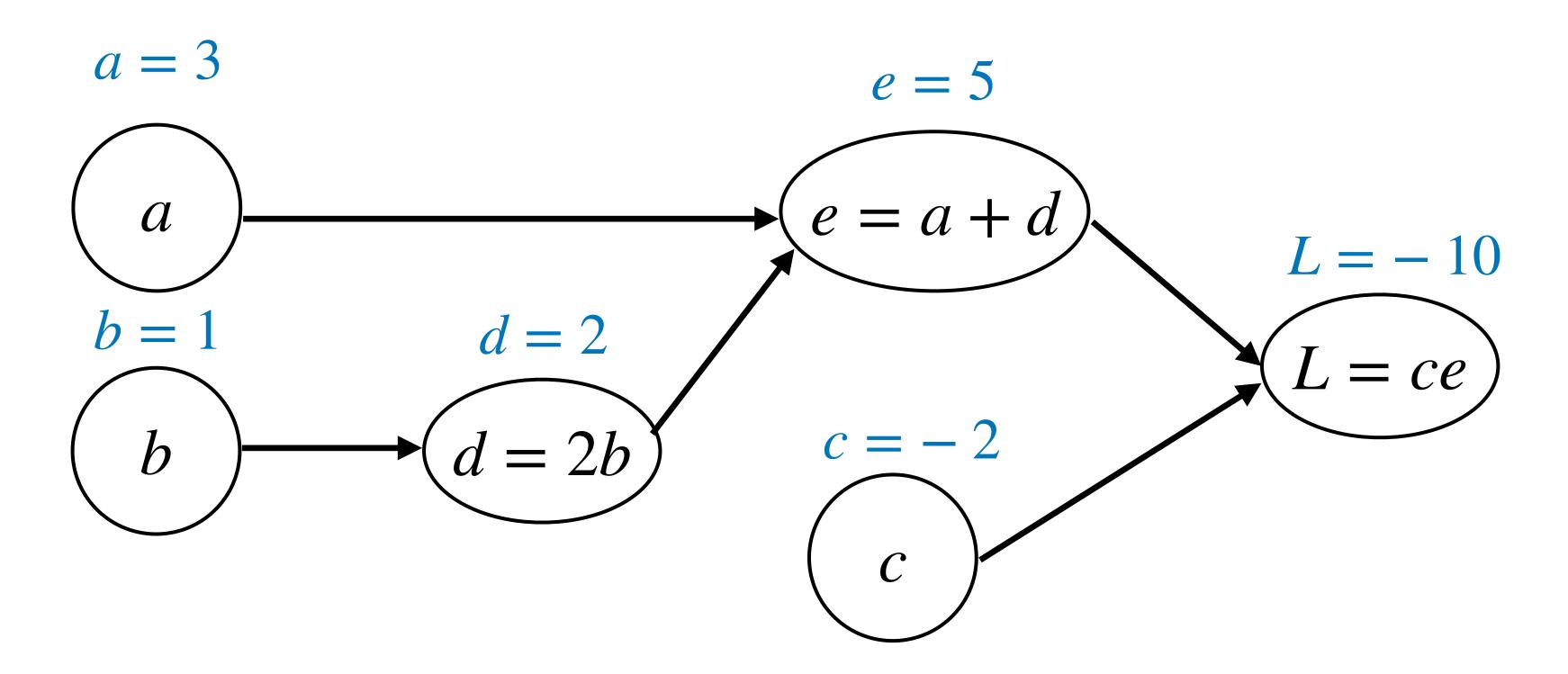
[Exercise] Try to construct a computation graph for a simple equation

• L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2



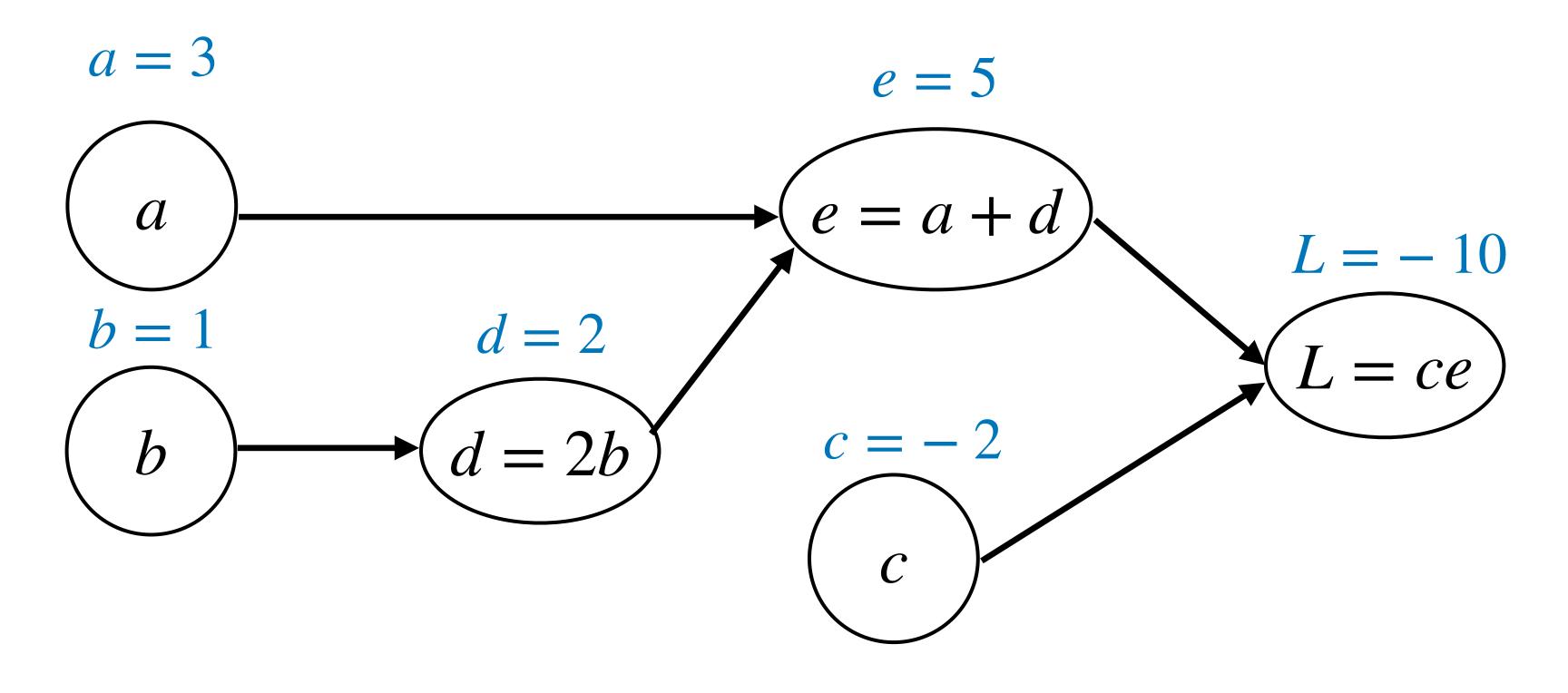
[Exercise] Try to construct a computation graph for a simple equation

• L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2



[Exercise] Try to construct a computation graph for a simple equation

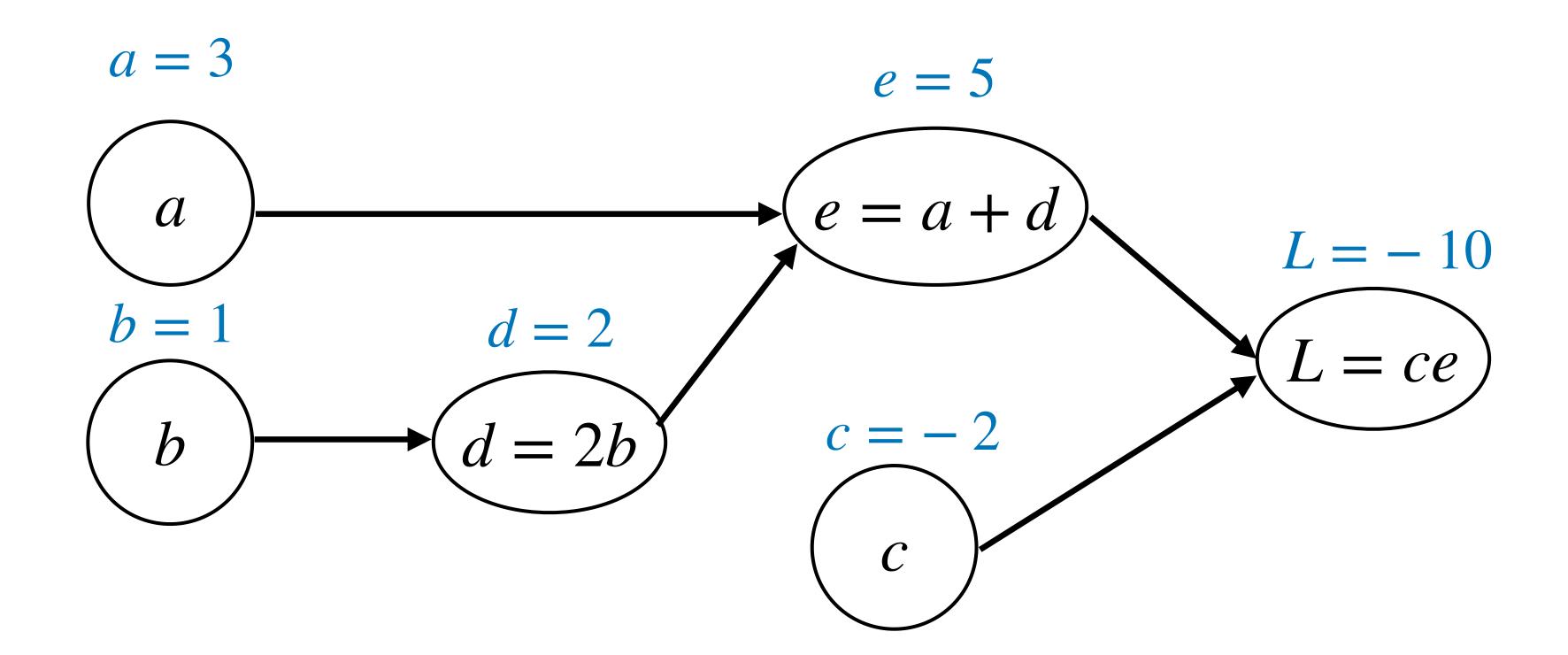
• L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2



Remember:
We want to know how much does a, b, c each contribute to the final loss L

Backpropagation

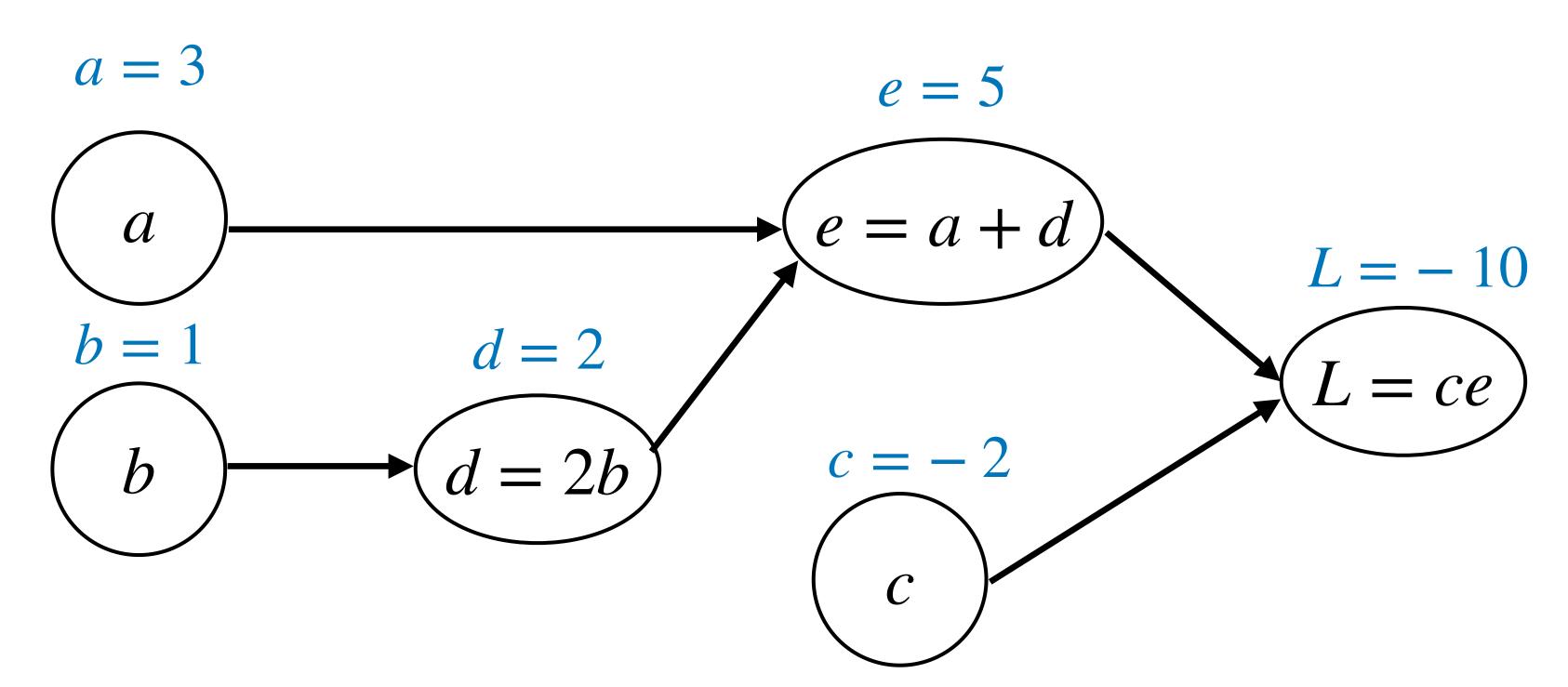
Responsibility attribution through gradient



Backpropagation

Responsibility attribution through gradient

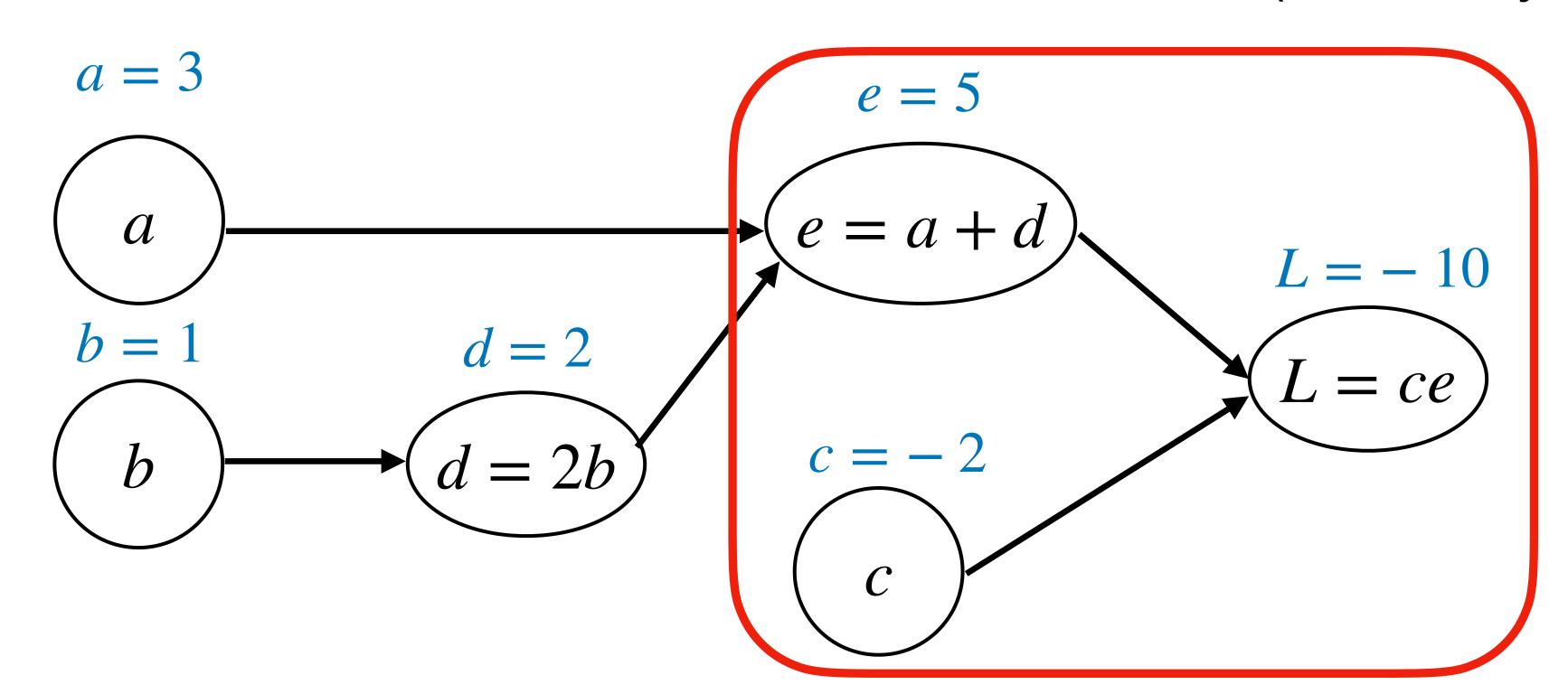
- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- But we do know how much c and e contributes (since they are the final step)!



Backpropagation

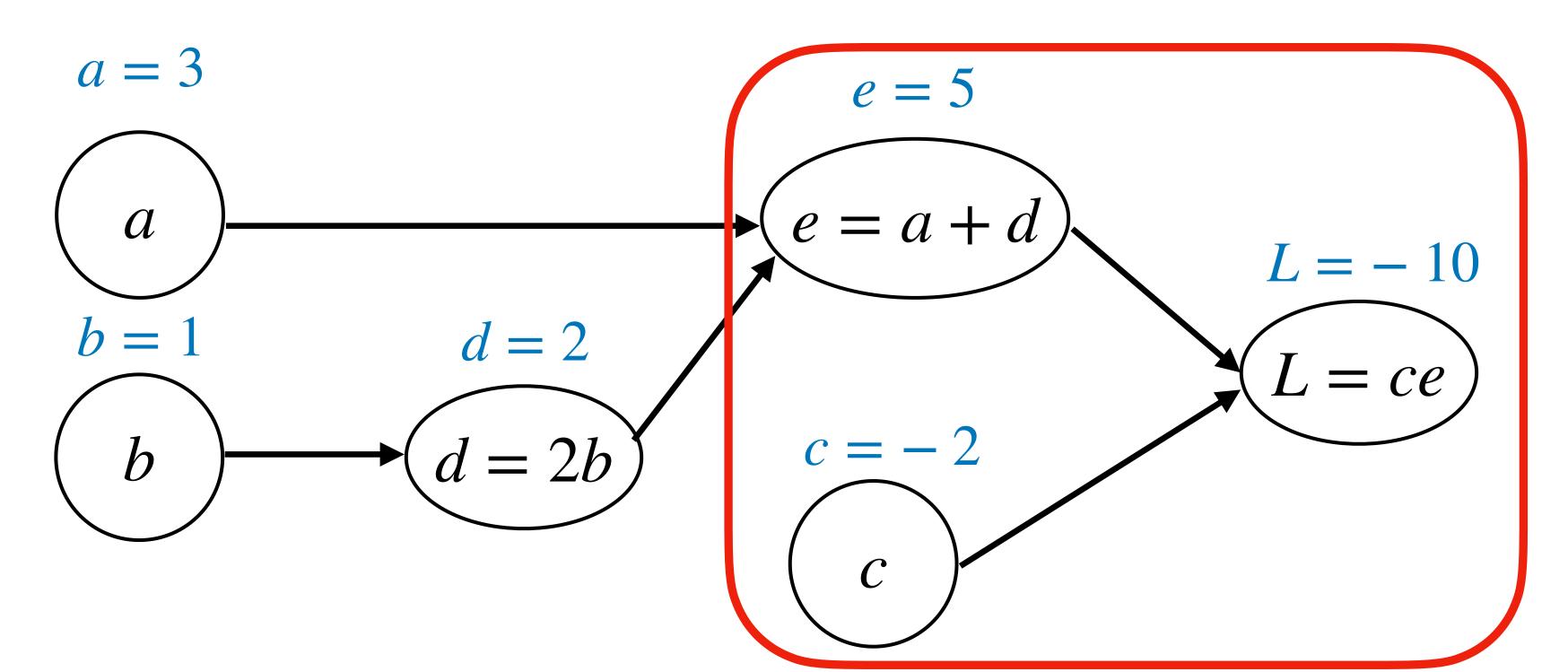
Responsibility attribution through gradient

- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- But we do know how much c and e contributes (since they are the final step)!



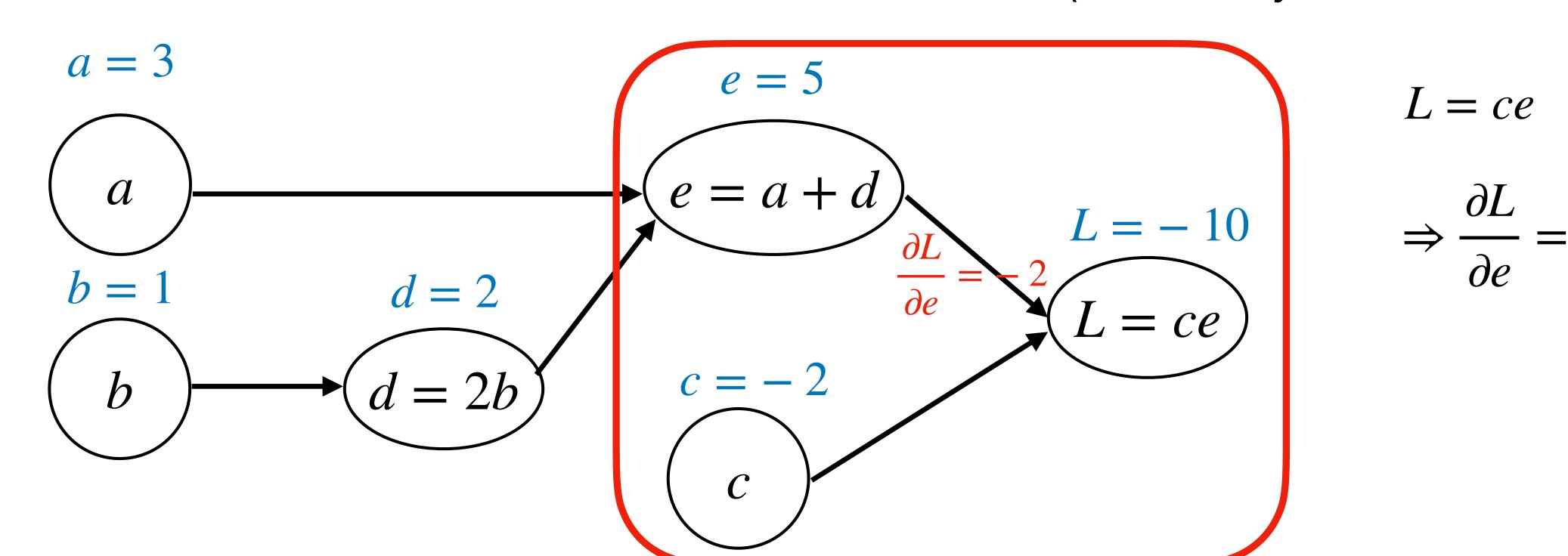
Responsibility attribution through gradient

- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- But we do know how much c and e contributes (since they are the final step)!

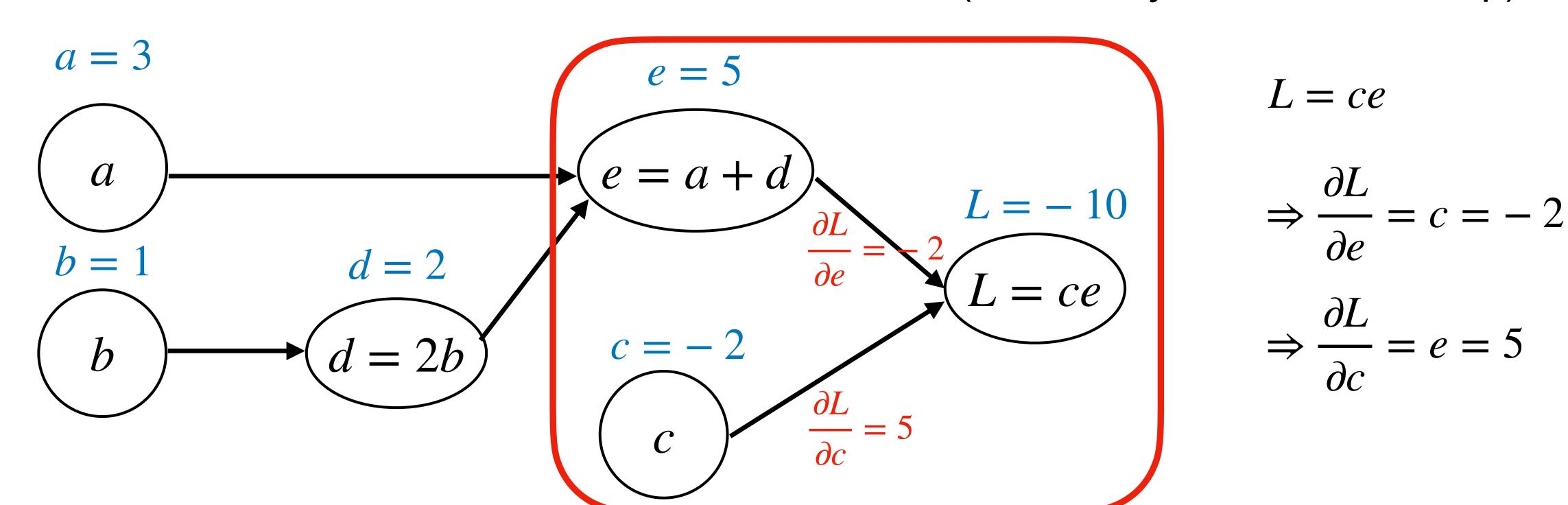


L = ce

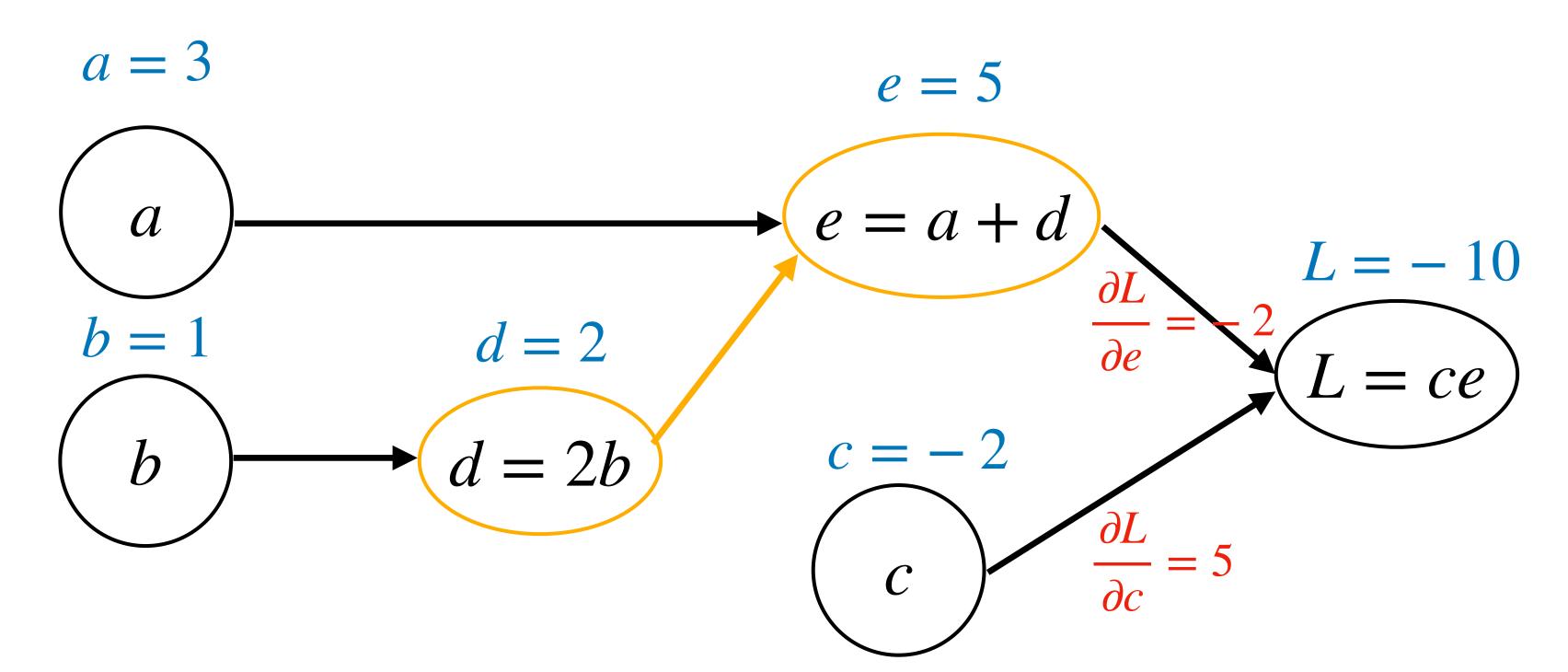
- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- But we do know how much c and e contributes (since they are the final step)!



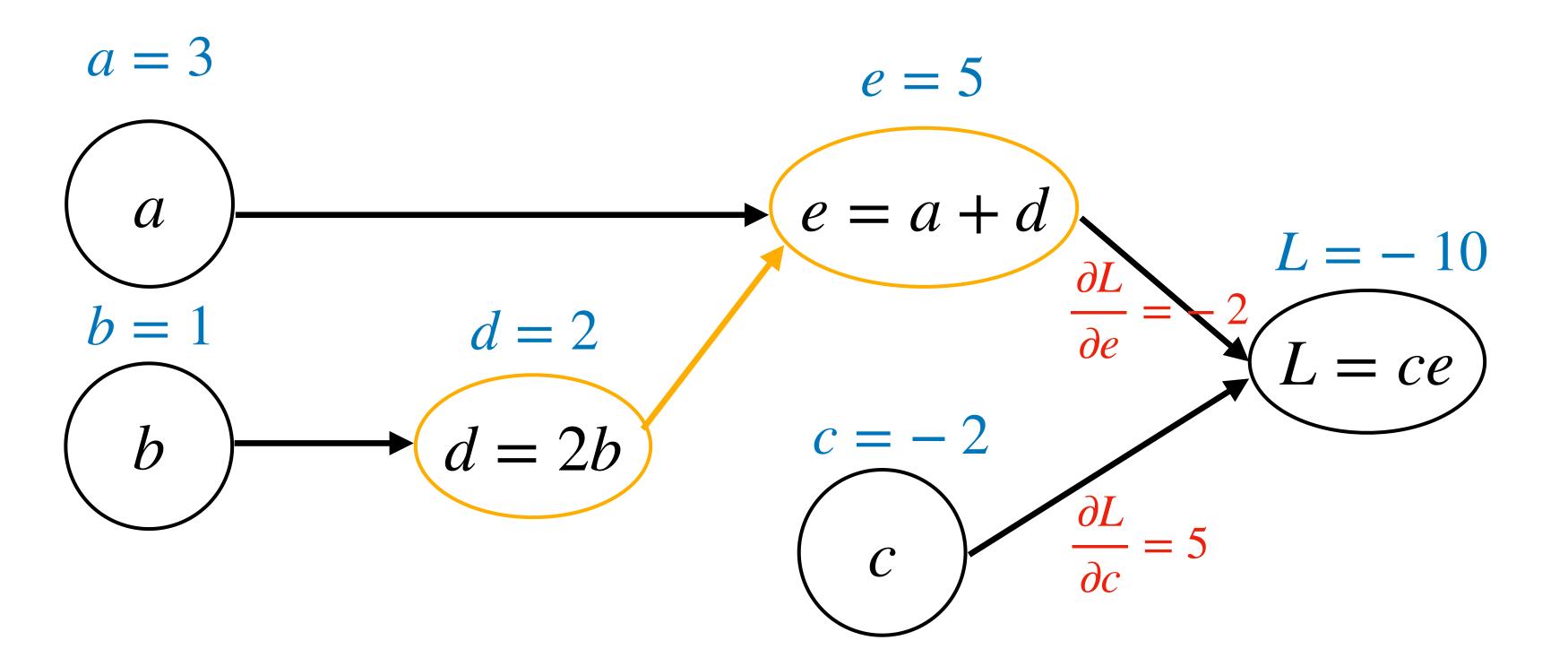
- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- But we do know how much c and e contributes (since they are the final step)!



- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- We use e's contribute to compute d's contribution.

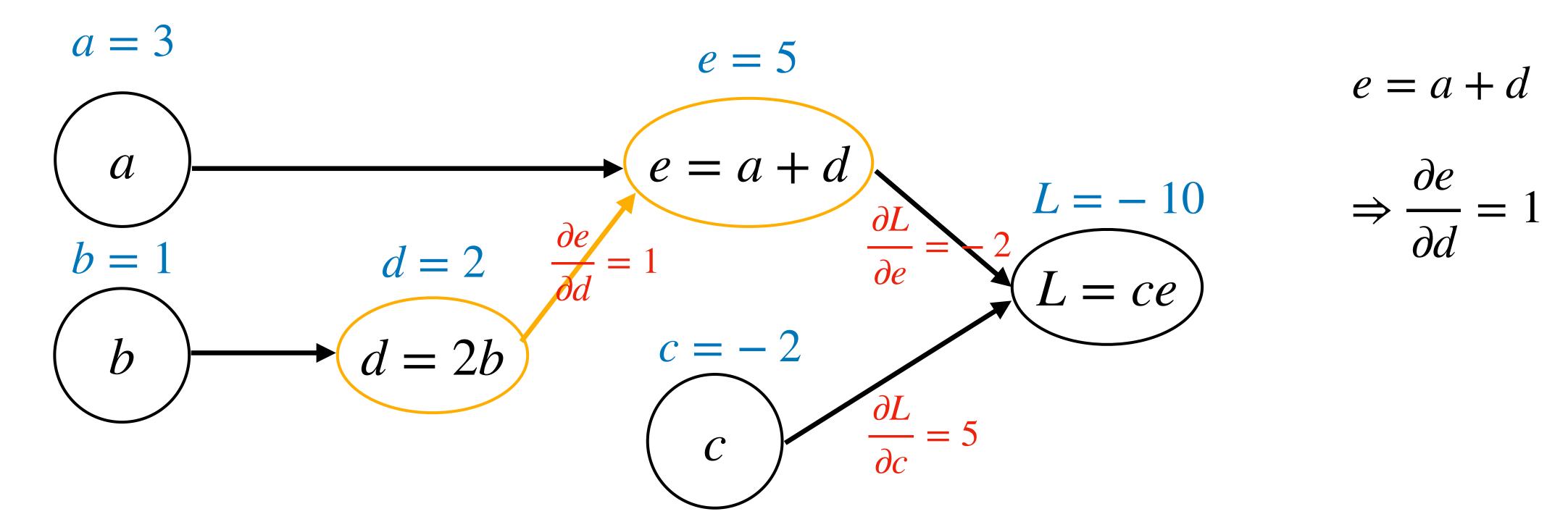


- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- We use e's contribute to compute d's contribution.



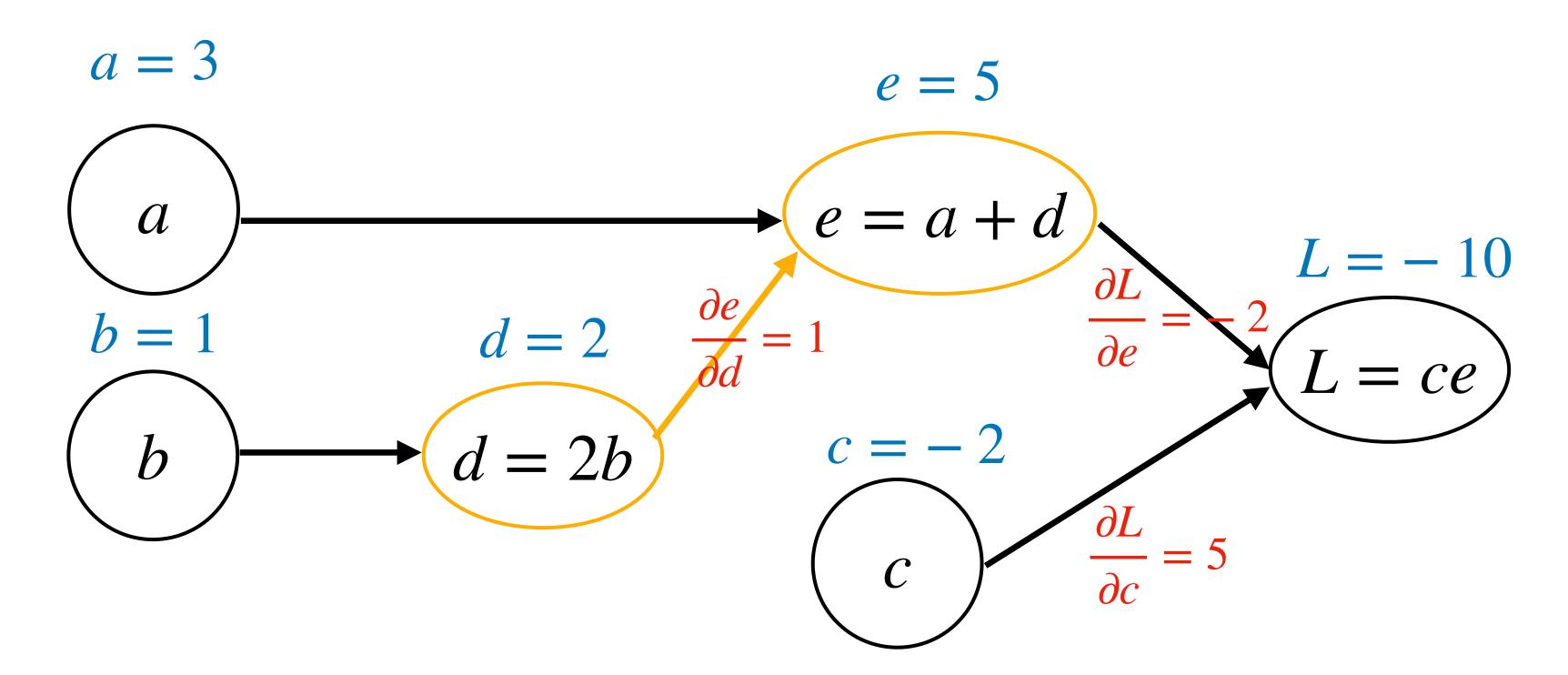
$$e = a + d$$

- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- We use e's contribute to compute d's contribution.



Responsibility attribution through gradient

- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- We use e's contribute to compute d's contribution.



$$f(x) = u(v(w(x)))$$

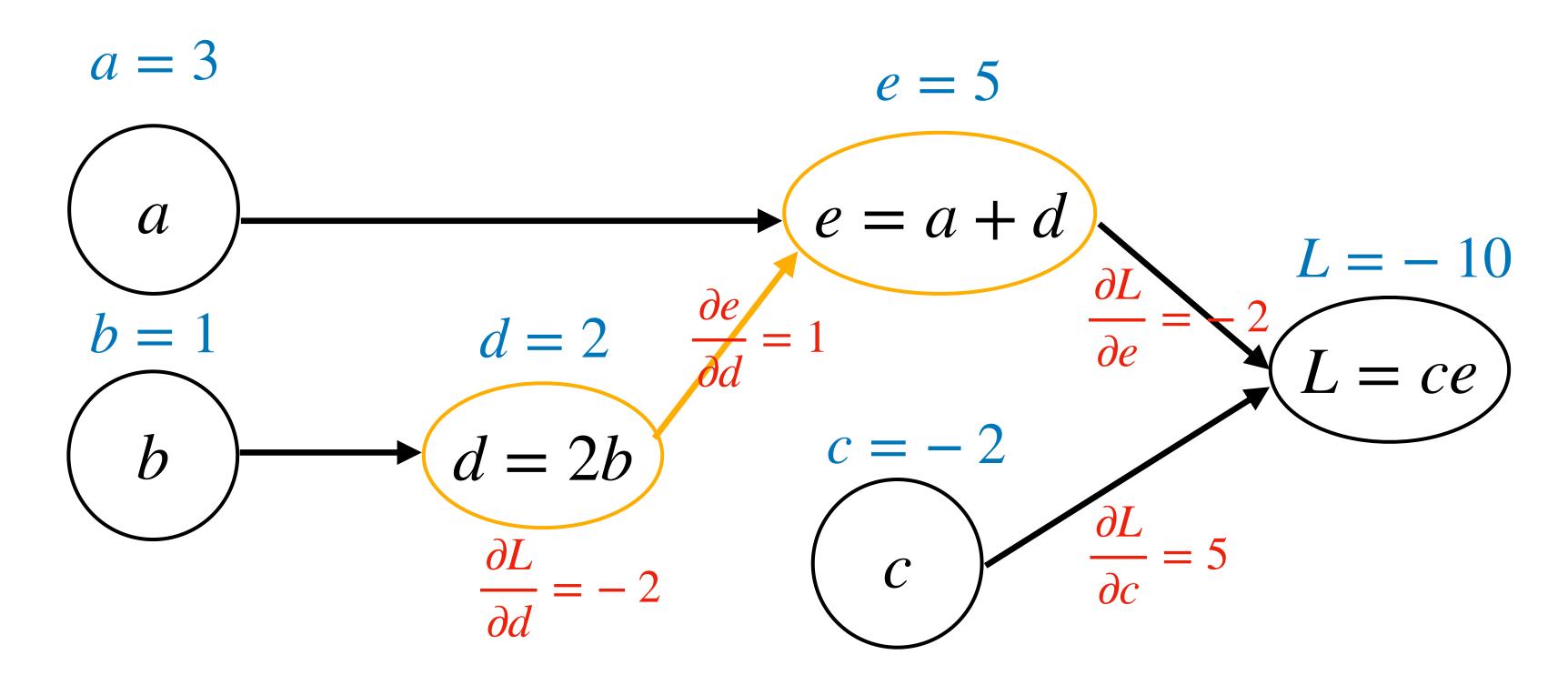
$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial w} \cdot \frac{\partial w}{\partial x}$$

$$e = a + d$$

$$\Rightarrow \frac{\partial e}{\partial d} = 1$$

Responsibility attribution through gradient

- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- We use e's contribute to compute d's contribution.



$$f(x) = u(v(w(x)))$$

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial w} \cdot \frac{\partial w}{\partial x}$$

$$e = a + d$$

$$\Rightarrow \frac{\partial e}{\partial d} = 1$$

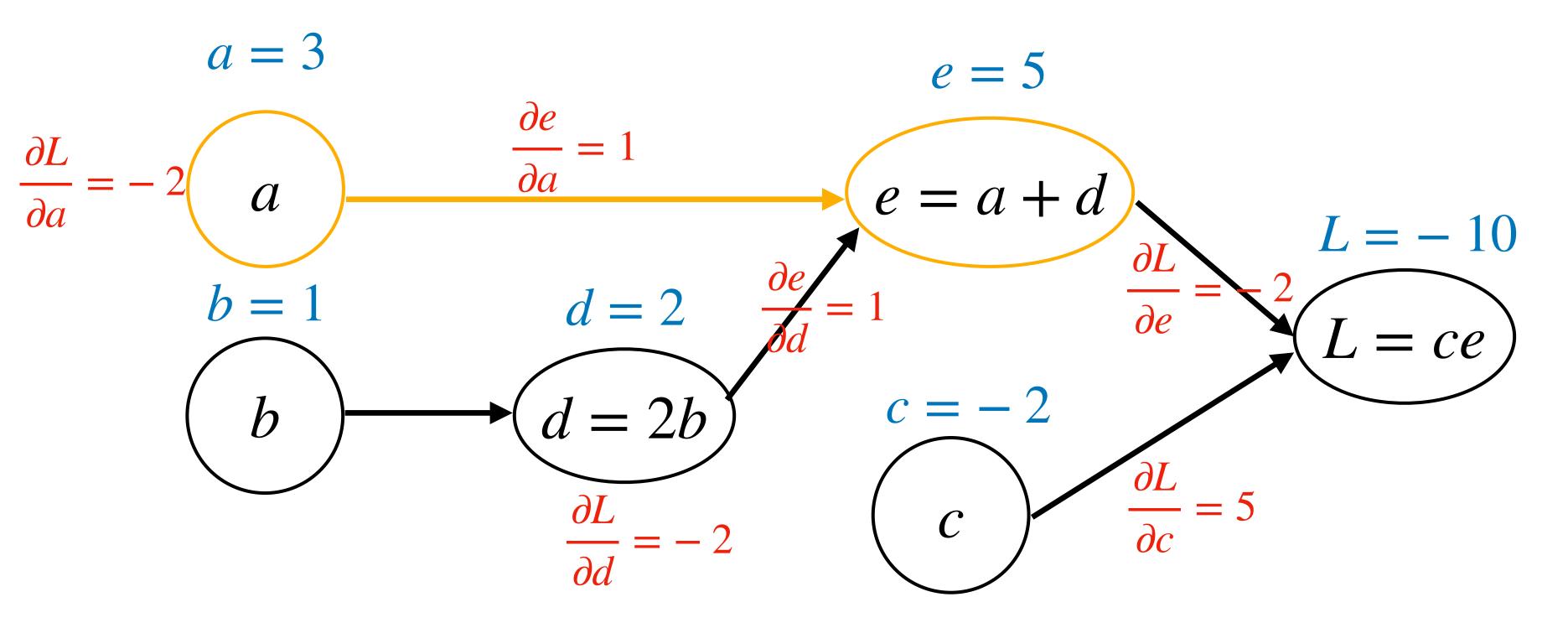
$$\Rightarrow \frac{\partial L}{\partial d} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d}$$

$$= 1 \times -2$$

$$= -2$$

Responsibility attribution through gradient

- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- We continue to compute the contribution of a and b, respectively.



$$f(x) = u(v(w(x)))$$

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial w} \cdot \frac{\partial w}{\partial x}$$

$$e = a + d$$

$$\Rightarrow \frac{\partial e}{\partial a} = 1$$

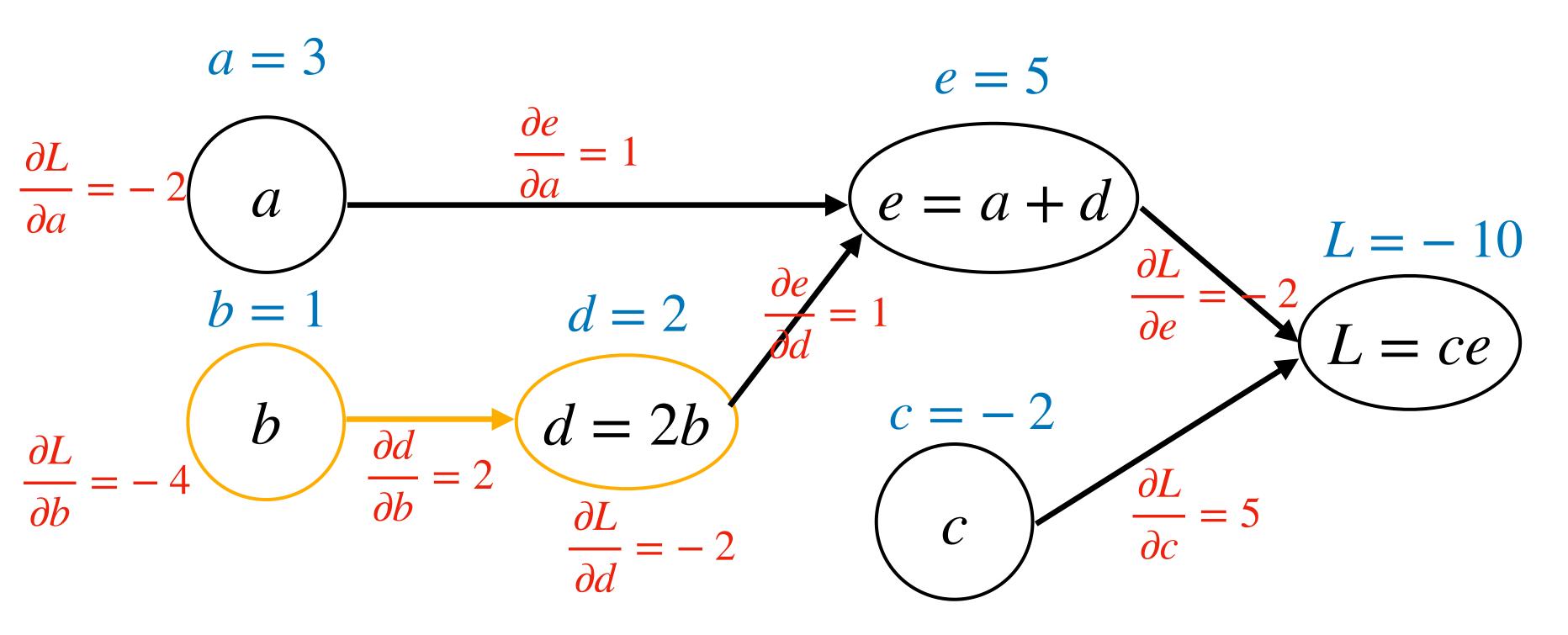
$$\Rightarrow \frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$$

$$= 1 \times -2$$

$$= -2$$

Responsibility attribution through gradient

- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
- We don't know immediately how much a contribute to $L\dots$
- We continue to compute the contribution of a and b, respectively.



$$f(x) = u(v(w(x)))$$

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial w} \cdot \frac{\partial w}{\partial x}$$

$$d = 2b$$

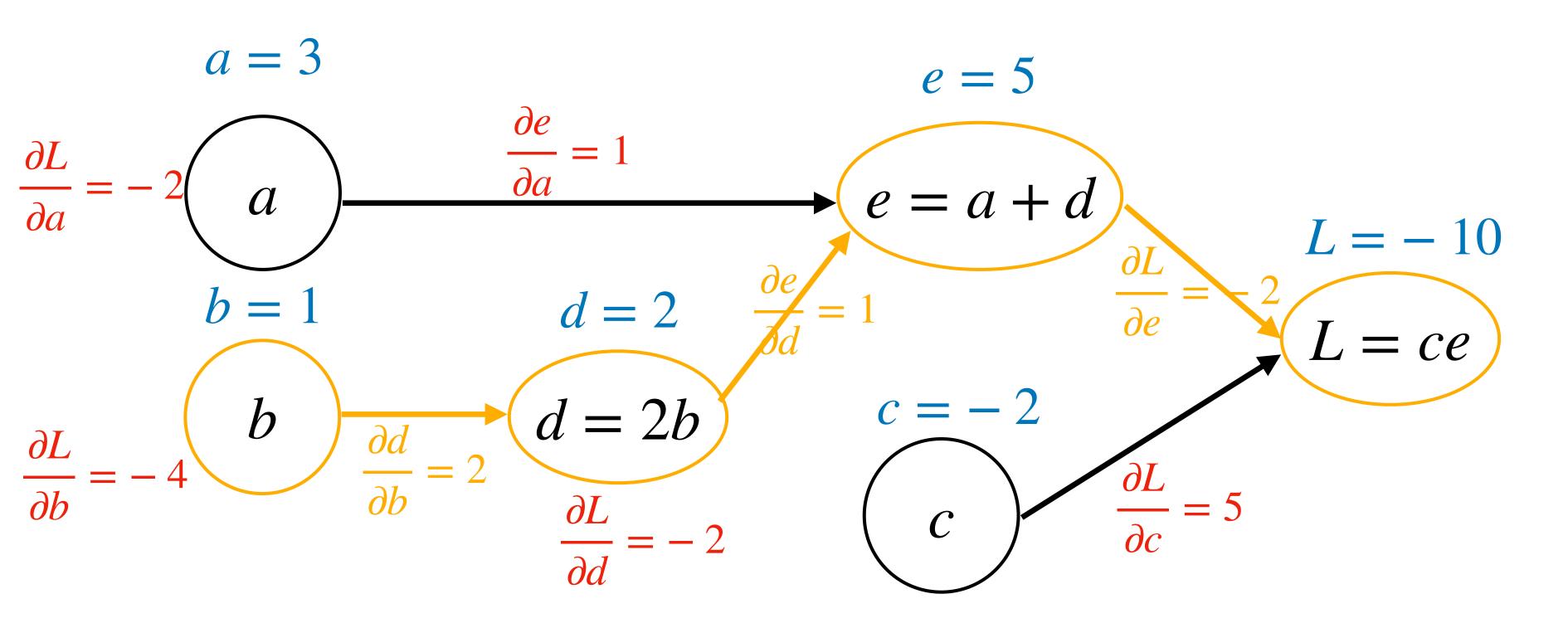
$$\Rightarrow \frac{\partial d}{\partial b} = 2$$

$$\Rightarrow \frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$

$$= -2 \times 1 \times 2$$

$$= -4$$

- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
 - Derivative on an edge: local dependency;
 - Derivative on node: long dependency all the way from the final node (L)



The Chain Rule
$$f(x) = u(v(w(x)))$$

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial x} \cdot \frac{\partial w}{\partial x}$$

$$d = 2b$$

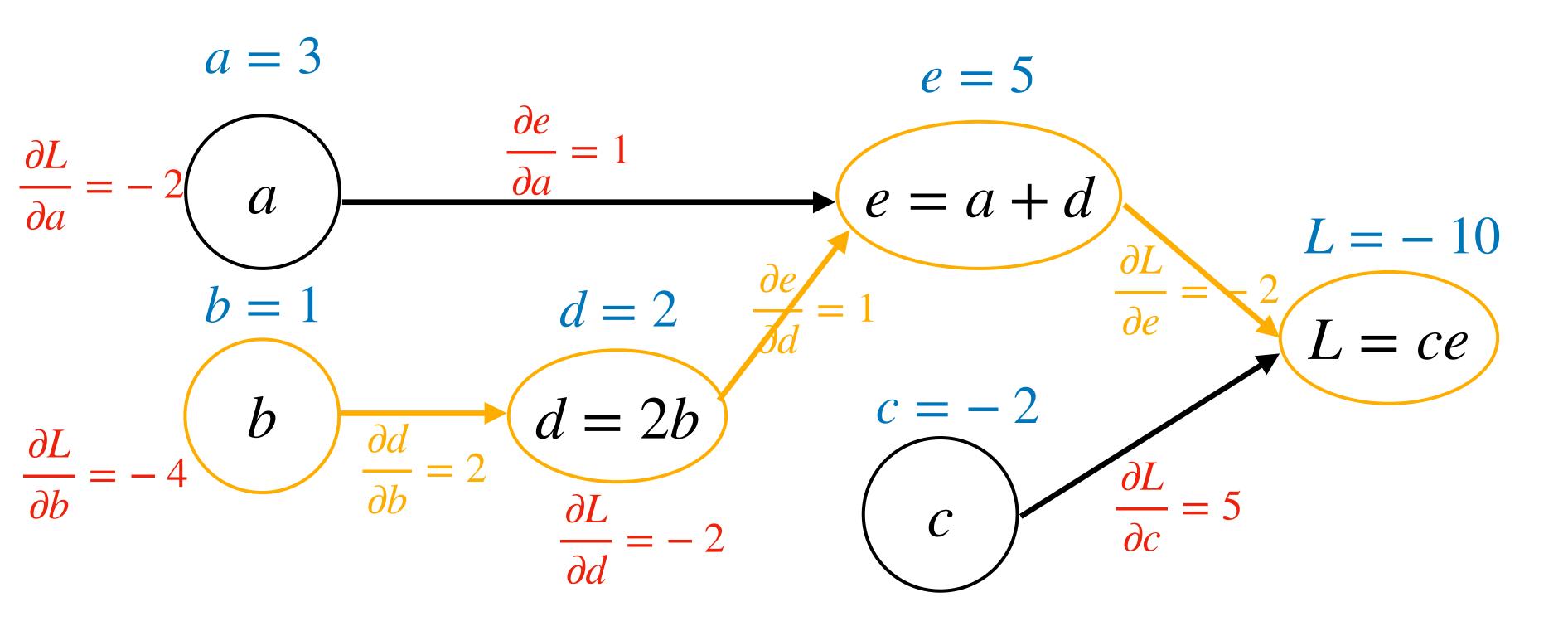
$$\Rightarrow \frac{\partial d}{\partial b} = 2$$

$$\Rightarrow \frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$

$$= -2 \times 1 \times 2$$

$$= -4$$

- L(a, b, c) = c(a + 2b). Now let a = 3, b = 1, c = -2;
 - Derivative on an edge: local dependency;
 - Derivative on node: long dependency all the way from the final node (L)



The Chain Rule
$$f(x) = u(v(w(x)))$$

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial x} \cdot \frac{\partial w}{\partial x}$$

$$d = 2b$$

$$\Rightarrow \frac{\partial d}{\partial b} = \frac{\text{Edge: local}}{2}$$

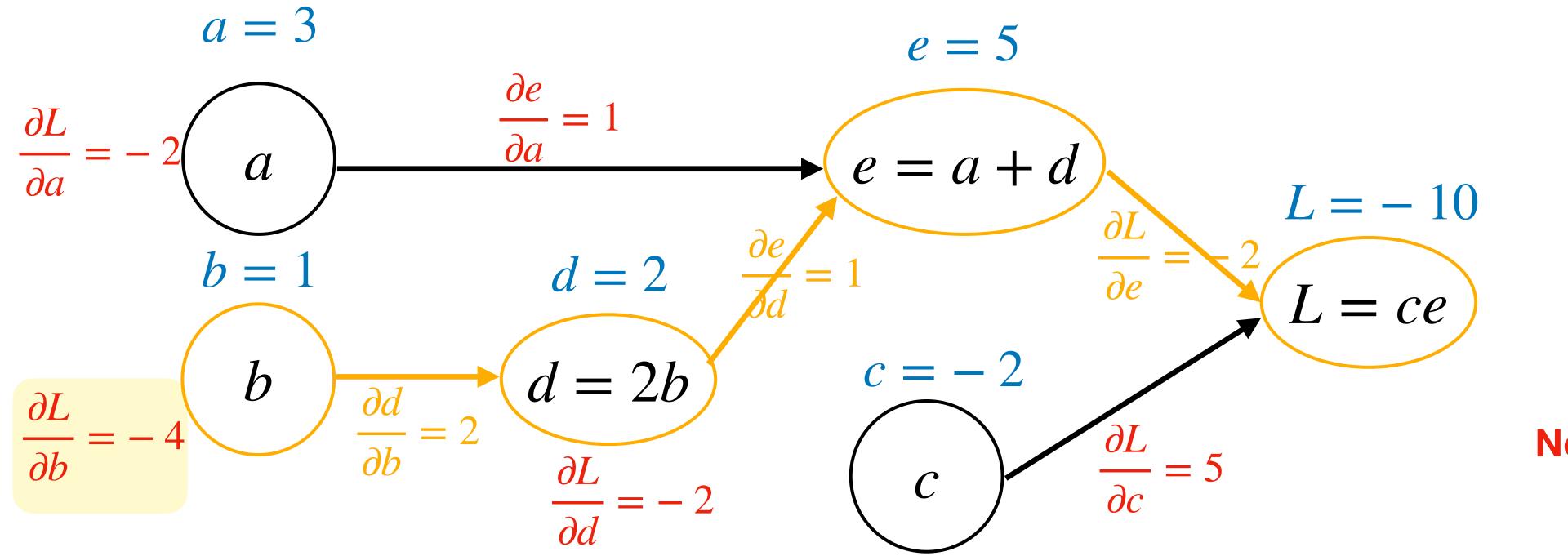
$$\Rightarrow \frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$

$$= -2 \times 1 \times 2$$

$$= -4$$

Responsibility attribution through gradient

- L(a,b,c) = c(a+2b). Now let a = 3, b = 1, c = -2;
 - Derivative on an edge: local dependency;
 - Derivative on node: long dependency all the way from the final node (L)



$$f(x) = u(v(w(x)))$$

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial w} \cdot \frac{\partial w}{\partial x}$$

$$d = 2b$$

$$\Rightarrow \frac{\partial d}{\partial b} = 2$$

$$\frac{\partial d}{\partial b}$$
Edge: local

$$\Rightarrow \frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$

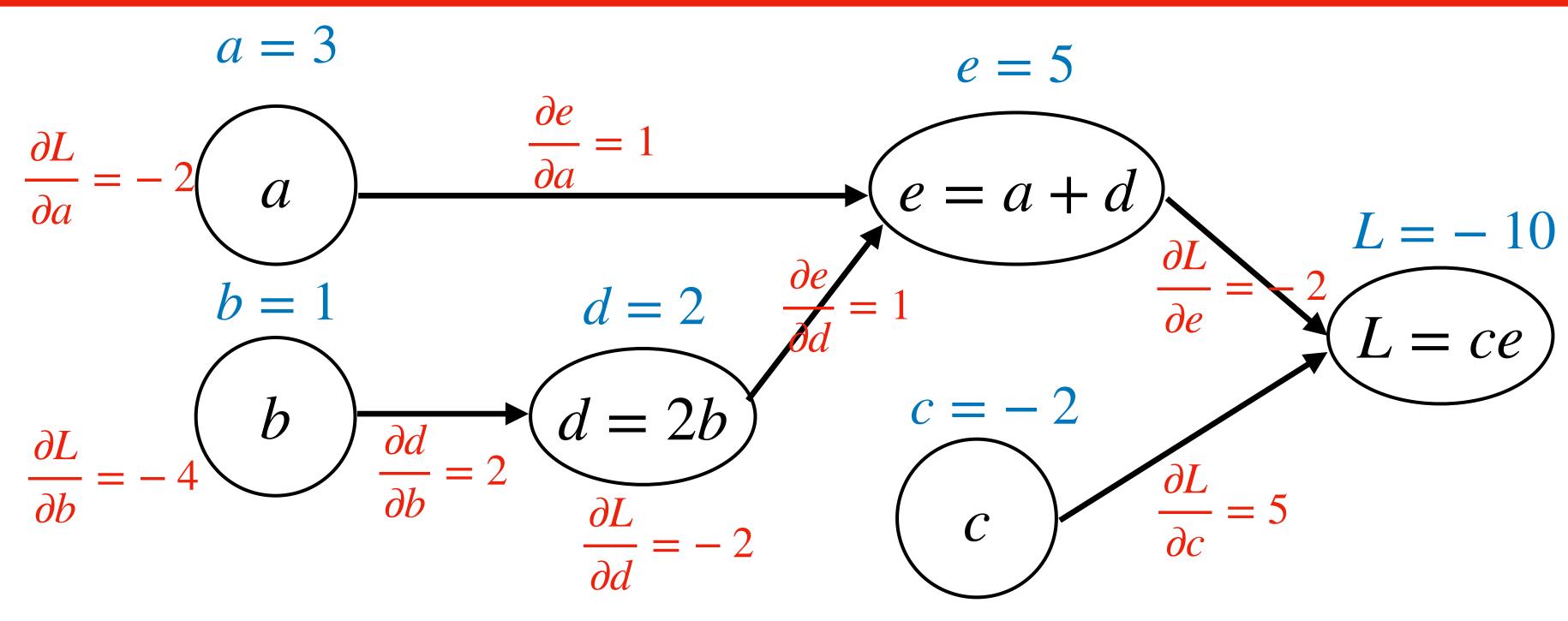
Node:
$$long = -2 \times 1 \times 2$$

= -4

Backpropagation → Gradient Descent

Learning/Updating the weights to minimize loss

Update each weight:
$$w' = w - \eta \frac{d}{dw} L(f(x; w), y)$$
, where $L(f(x; w), y) = L(\hat{y} - y)$

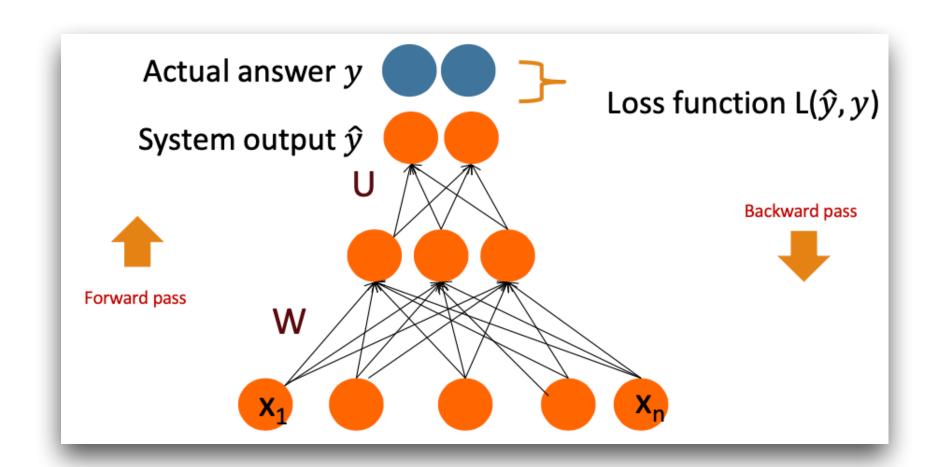


Backward Pass: Error Propagation

Gradient Descent in Neural Networks

For every training tuple (x, y)

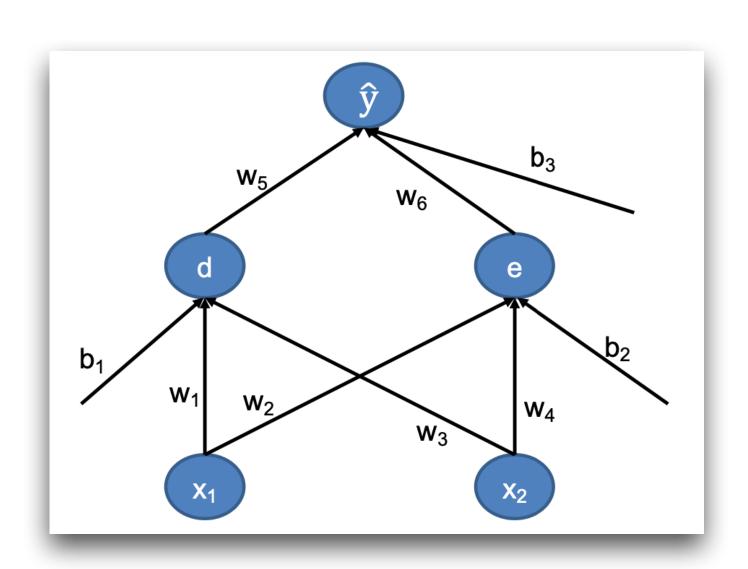
- Run *forward* computation to find our estimate \hat{y}
- Run backward computation to update weights:
 - For every output node
 - Compute loss L between true y and the estimated \hat{y}
 - For every weight w from hidden layer to the output layer
 - Update the weight
 - For every hidden node
 - Assess how much blame it deserves for the current answer
 - For every weight w from input layer to the hidden layer
 - Update the weight



The computation quickly blows up

Verify this when you are free!

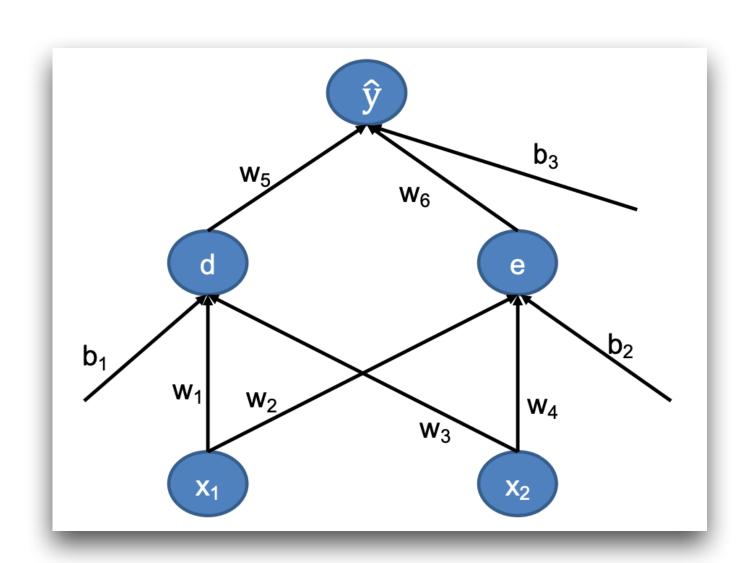
For a simple two-layer neural network:



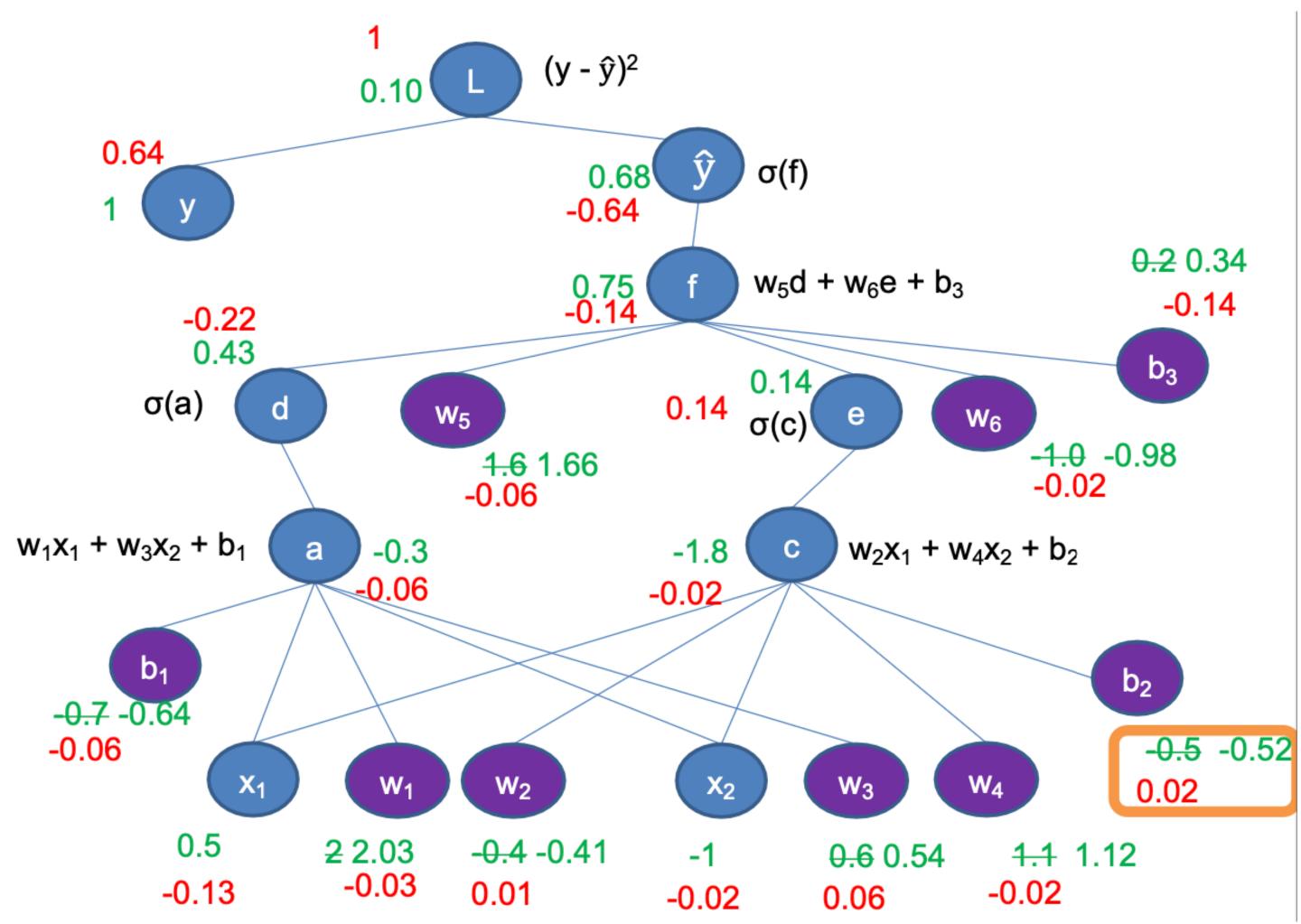
The computation quickly blows up

Verify this when you are free!

For a simple two-layer neural network:



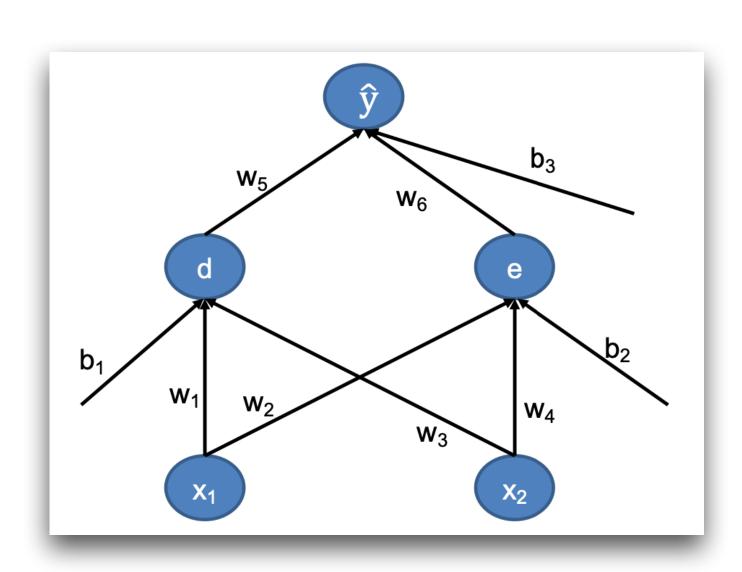
One round of gradient descent:



The computation quickly blows up

Verify this when you are free!

For a simple two-layer neural network:



One round of gradient descent:

Example: Binary logistic regression

•
$$L(\hat{y}, y) = \ln(1 - \frac{1}{1 + e^{-(w_1 x_1 + w_2 x_2 + b)}})$$

Repeat from previous slide

•
$$L(\hat{y}, y) = \ln(\frac{1 + e^{-(w_1 x_1 + w_2 x_2 + b)}}{1 + e^{-(w_1 x_1 + w_2 x_2 + b)}} - \frac{1}{1 + e^{-(w_1 x_1 + w_2 x_2 + b)}})$$

Algebra

•
$$L(\hat{y}, y) = \ln(\frac{e^{-(w_1 x_1 + w_2 x_2 + b)}}{1 + e^{-(w_1 x_1 + w_2 x_2 + b)}})$$

Algebra

•
$$L(\hat{y}, y) = \ln(e^{-(w_1x_1 + w_2x_2 + b)}) - \ln(1 + e^{-(w_1x_1 + w_2x_2 + b)})$$

Algebra

•
$$L(\hat{y}, y) = -(w_1x_1 + w_2x_2 + b) - \ln(1 + e^{-(w_1x_1 + w_2x_2 + b)})$$

Algebra

•
$$\frac{\partial}{\partial w_1}L(\hat{y},y) = -x_1 - \frac{1}{1+e^{-(w_1x_1+w_2x_2+b)}}e^{-(w_1x_1+w_2x_2+b)}(-x_1)$$

Take partial derivative

•
$$\frac{\partial}{\partial w_1} L(\hat{y}, y) = x_1(-1 + \frac{e^{-(w_1 x_1 + w_2 x_2 + b)}}{1 + e^{-(w_1 x_1 + w_2 x_2 + b)}})$$

Algebra

•
$$\frac{\partial}{\partial w_1}L(\hat{y},y) = x_1(\frac{-1}{1+e^{-(w_1x_1+w_2x_2+b)}})$$

Algebra

Notes on Loss Functions

Bonus on math

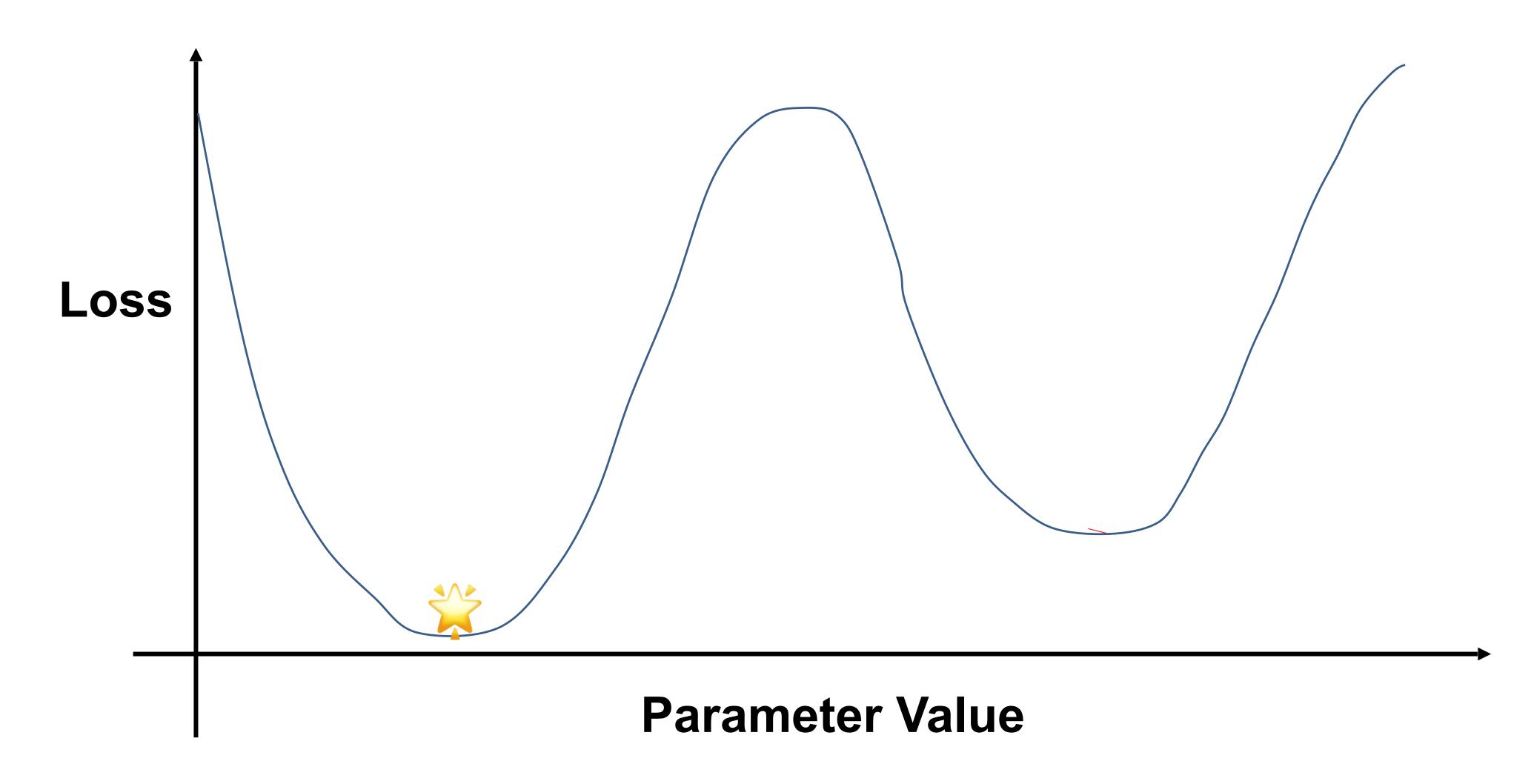
 If you wonder why perceptron learning uses + while neural network uses - to update their weights....!

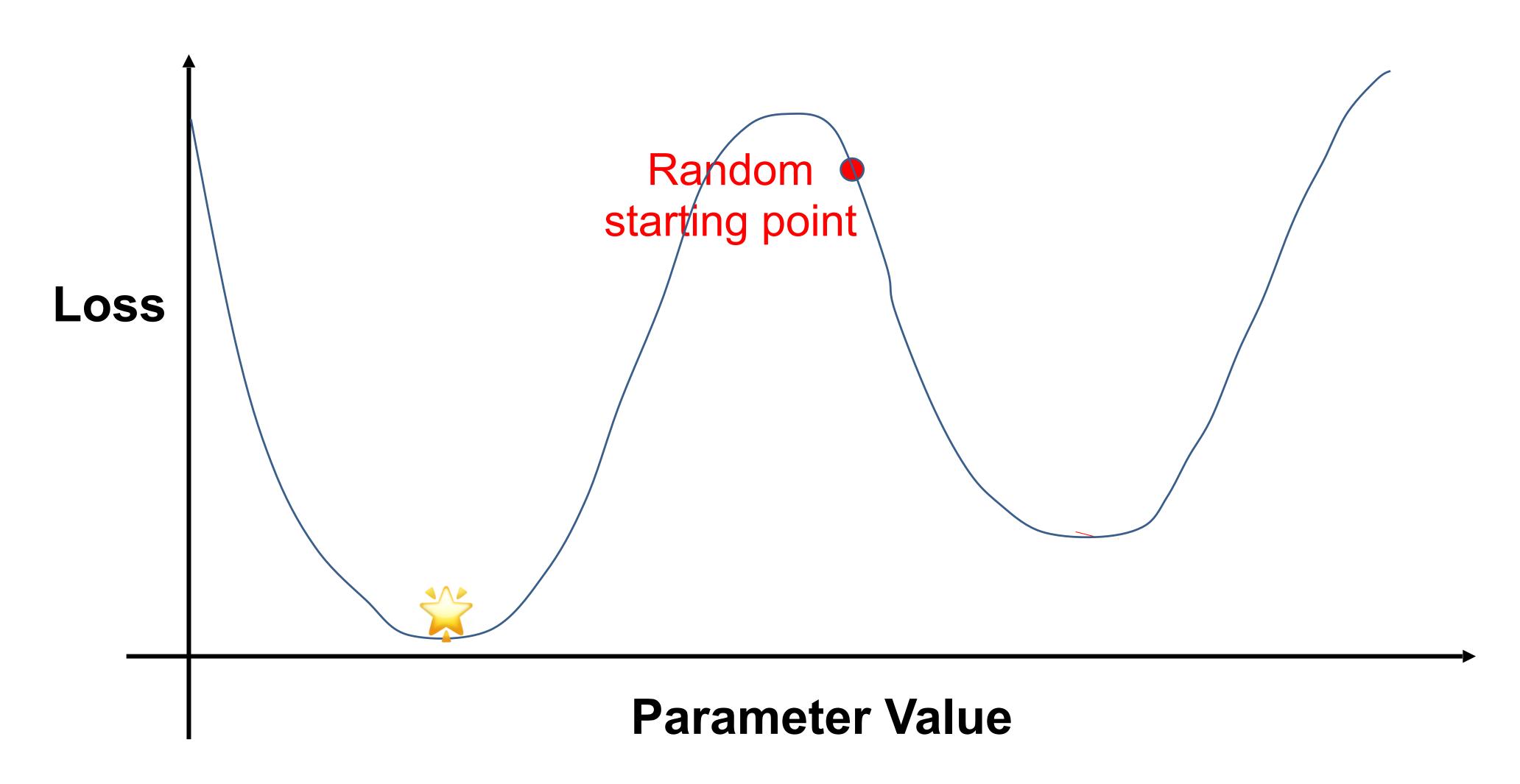
Perceptron:
$$\mathbf{w} = \mathbf{w} + \eta(y - \hat{y})\mathbf{x}$$
; Neural Network: $w' = w - \eta \frac{d}{dw} L(f(x; w), y)$

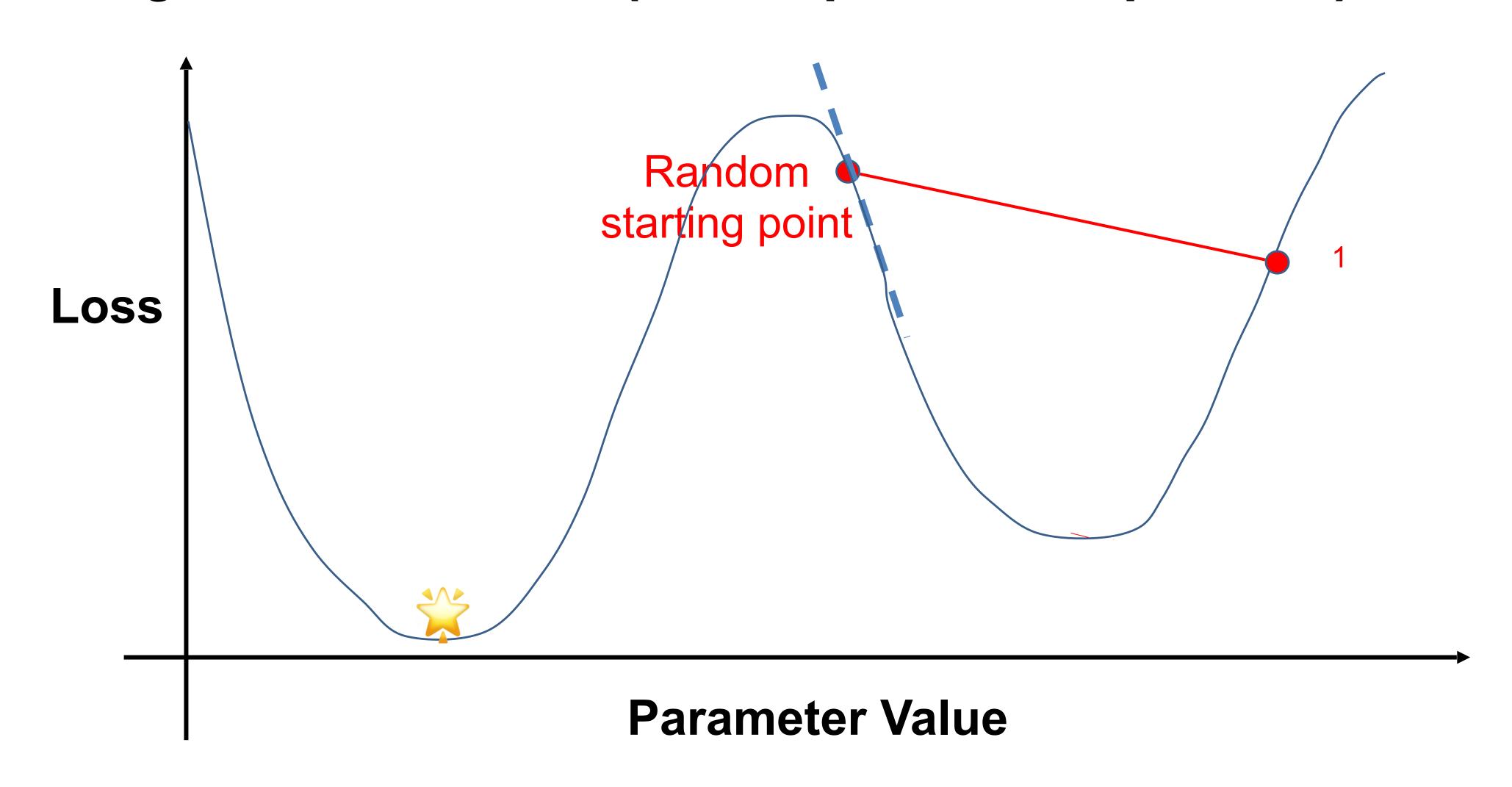
- Short answer: they are actually the same thing! Here is a derivation:
- * For loss function $L = \frac{1}{2}(y \hat{y})^2$ or $L = -\left[y\log(\hat{y}) + (1 y)\log(1 \hat{y})\right]$:
- * The gradient with respect to weight w_i turns out to be: $\frac{\partial L}{\partial w_i} = -(y \hat{y})x_i$
- * If we plug this into the gradient descent formula:

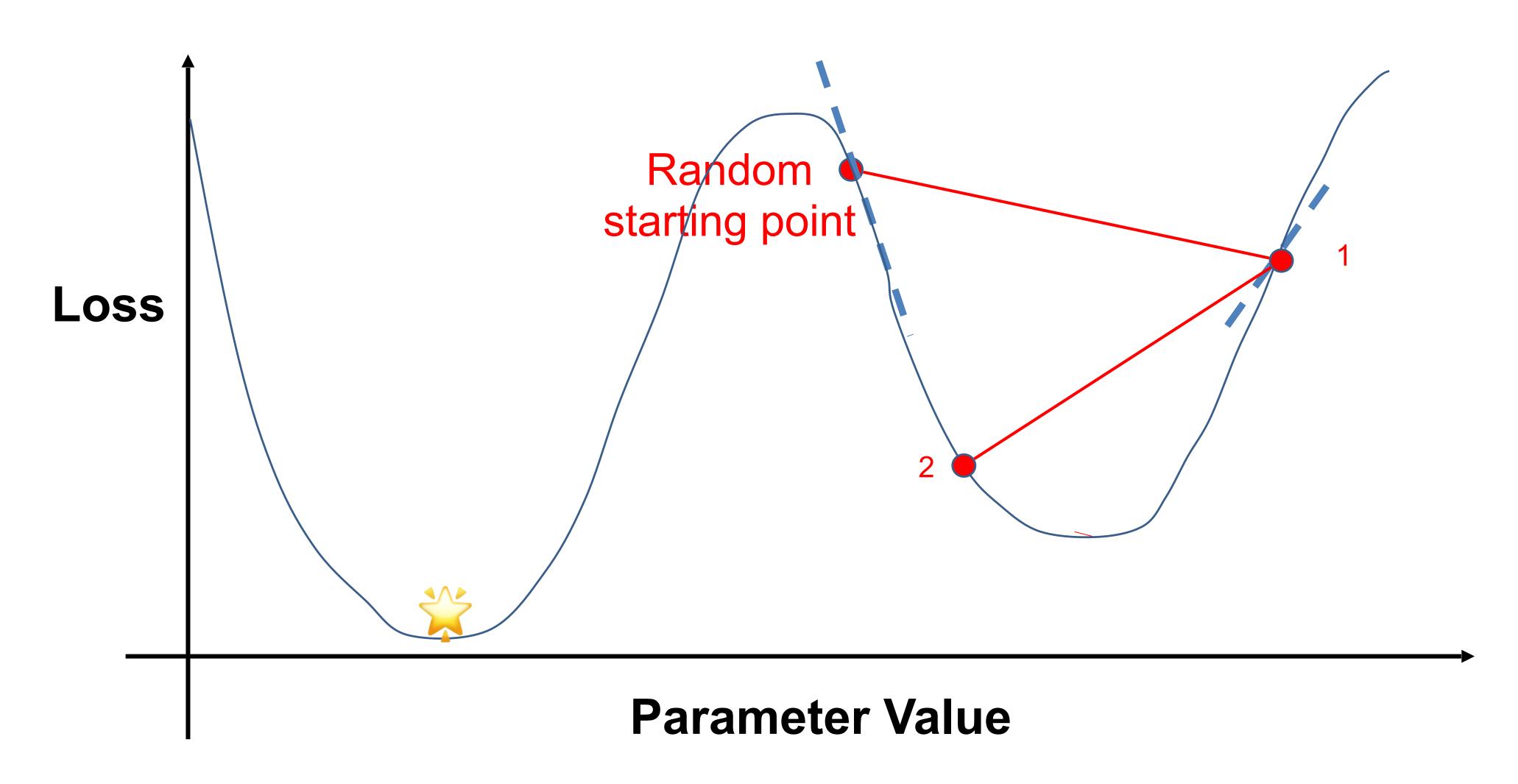
$$\mathbf{w} := \mathbf{w} - \eta \frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \eta \left(-(y - \hat{y}) \mathbf{x} \right) = \mathbf{w} + \eta (y - \hat{y}) \mathbf{x}$$

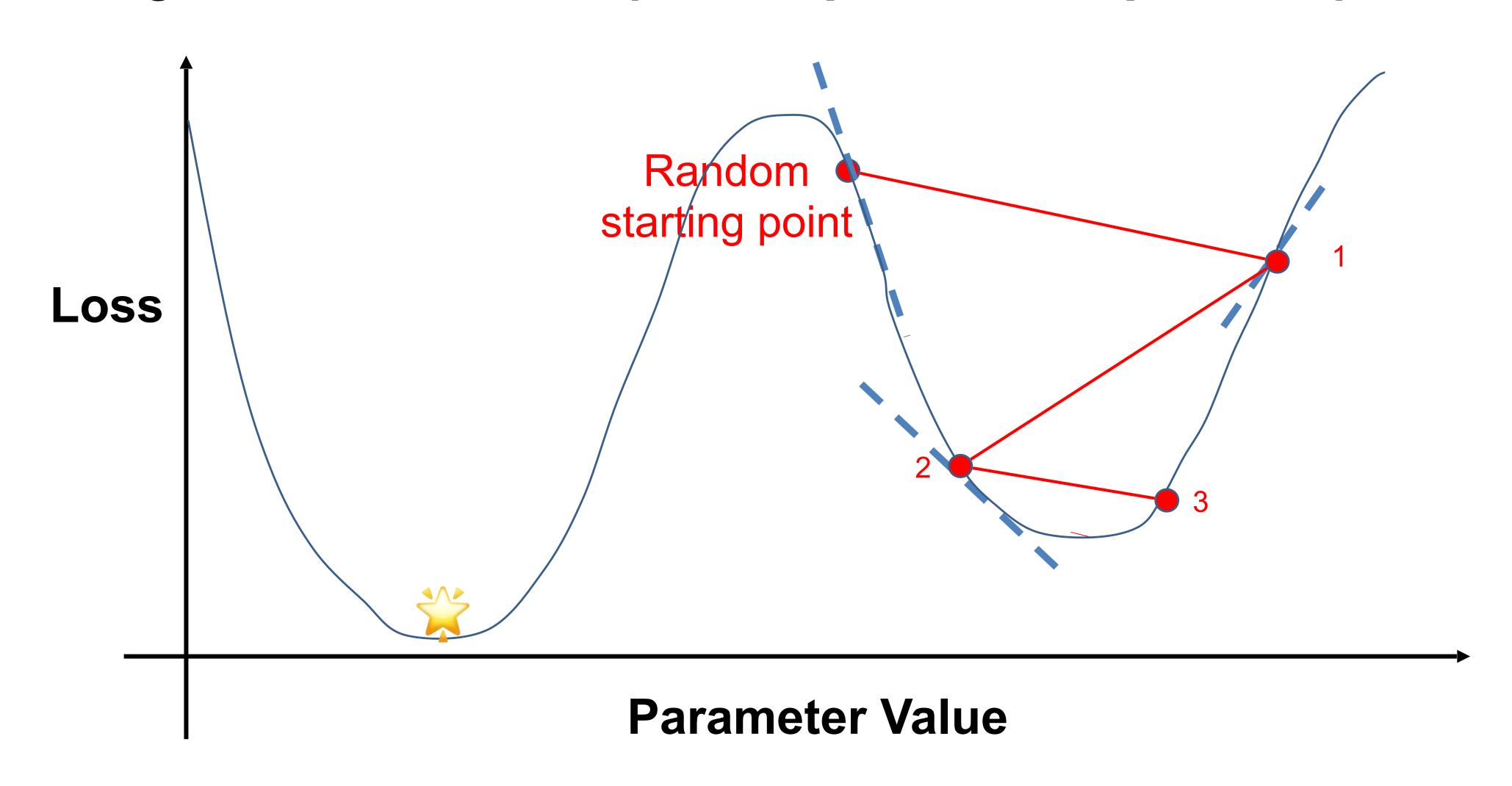
* The two minus signs cancels, giving the same direction as perception update.

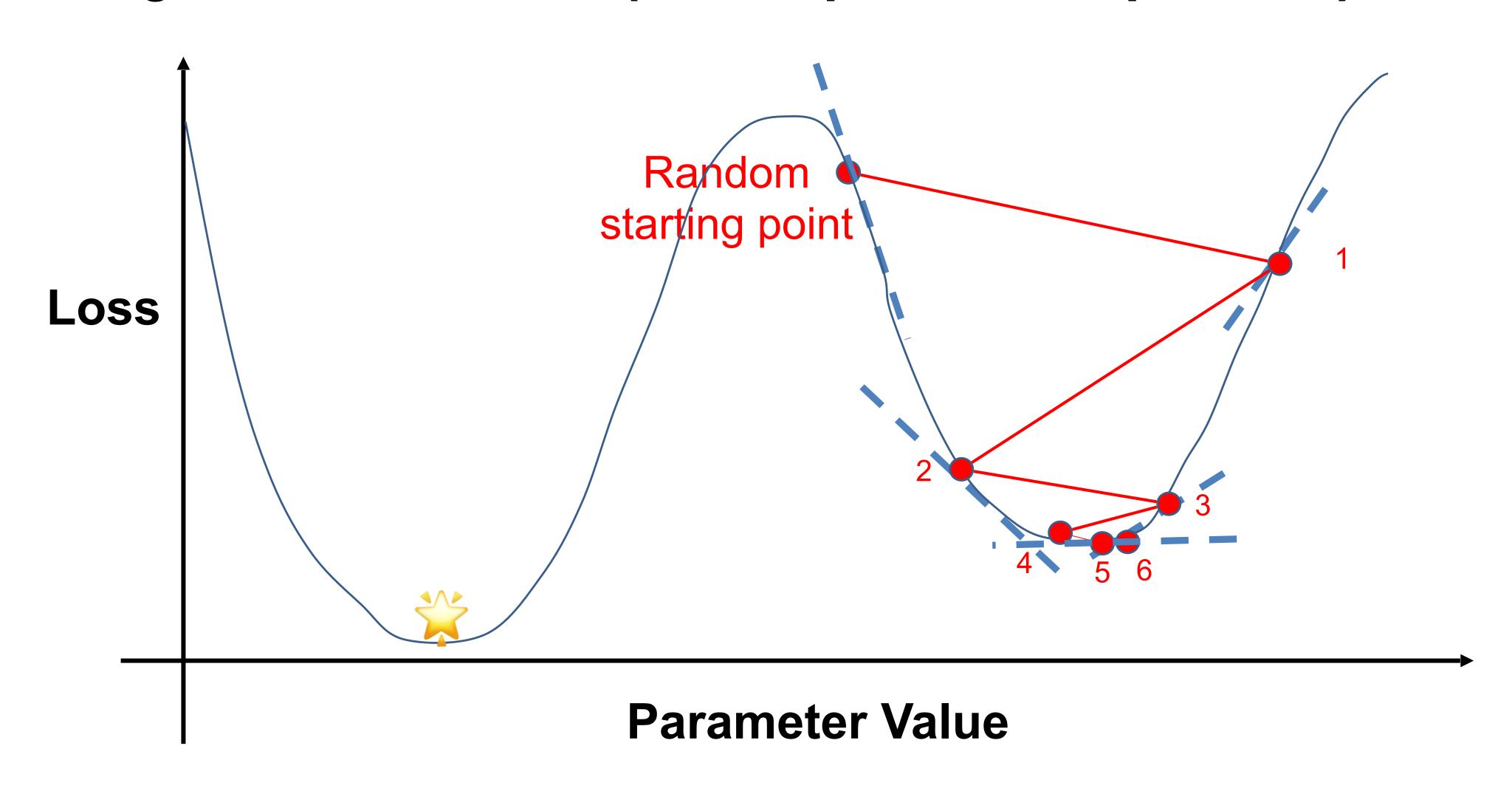


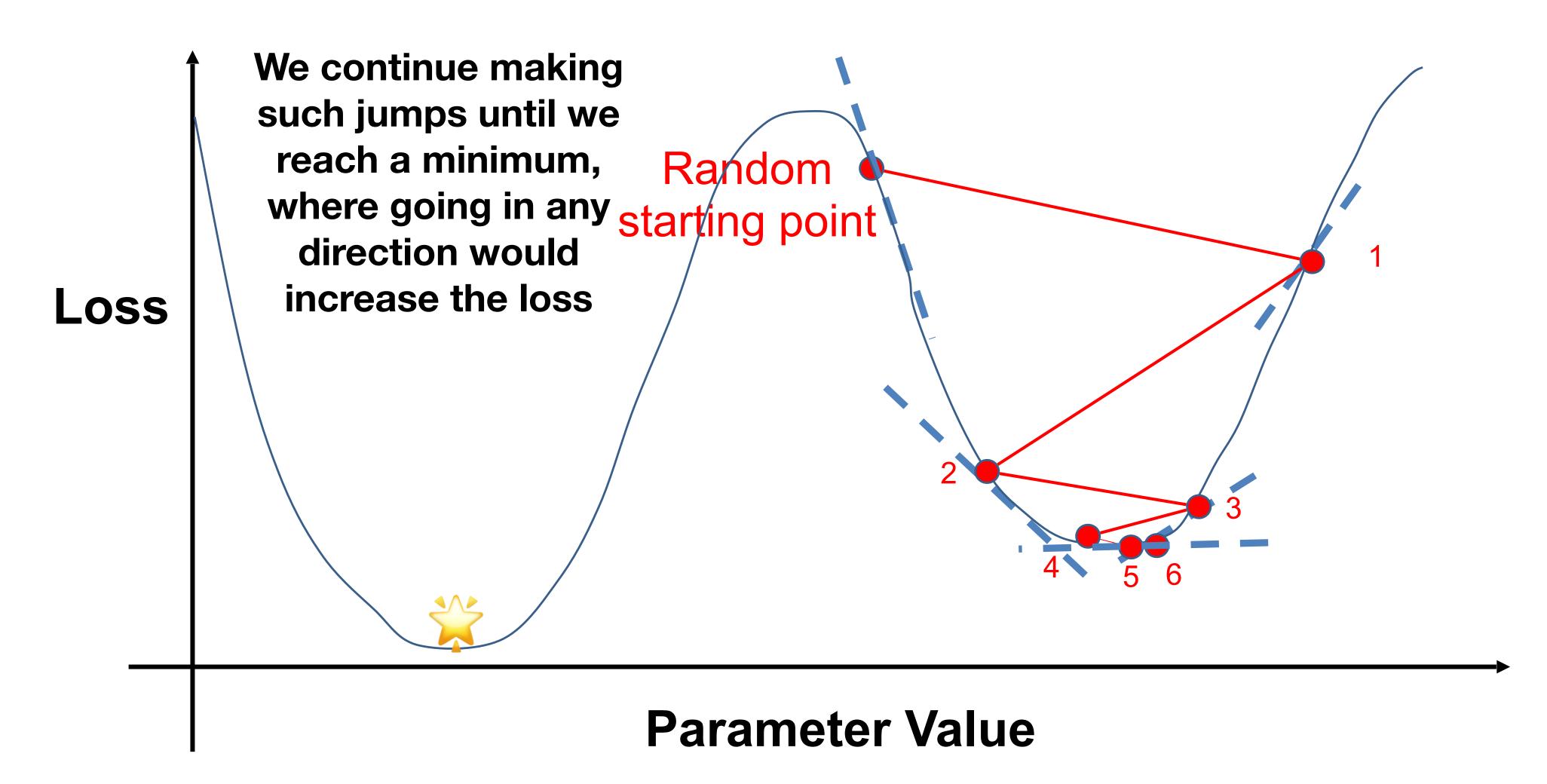




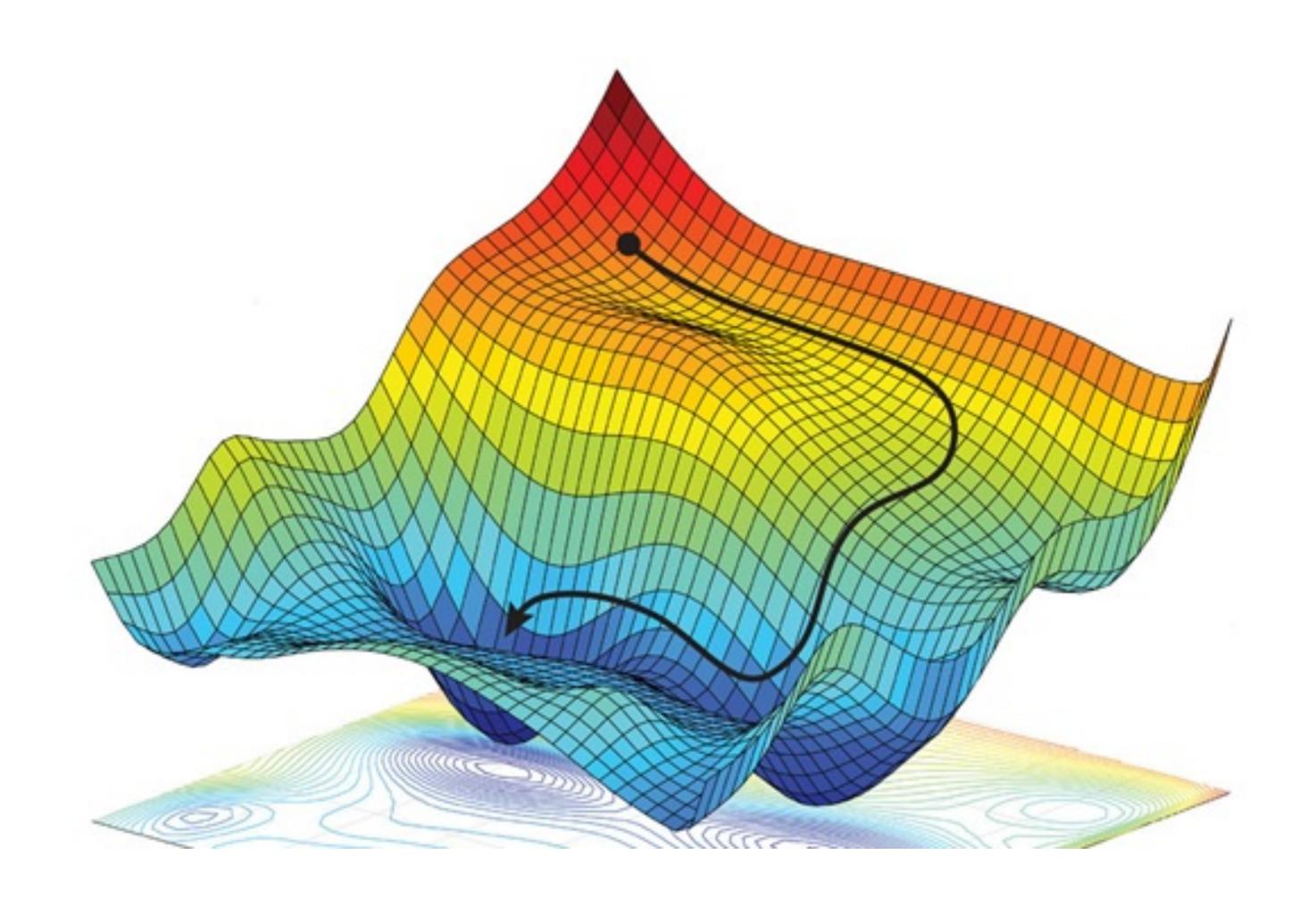








Gradient Descent: Intuitions in High Dimensions



Interium Summary 4

Backpropagation and Gradient Descent

Interium Summary 4

Backpropagation and Gradient Descent

- Backpropagation (a method for efficiently computing the gradients) tells us *what the gradients are* for each weight.
 - Computing dependencies across layers through chain rule in computation graphs;

Interium Summary 4

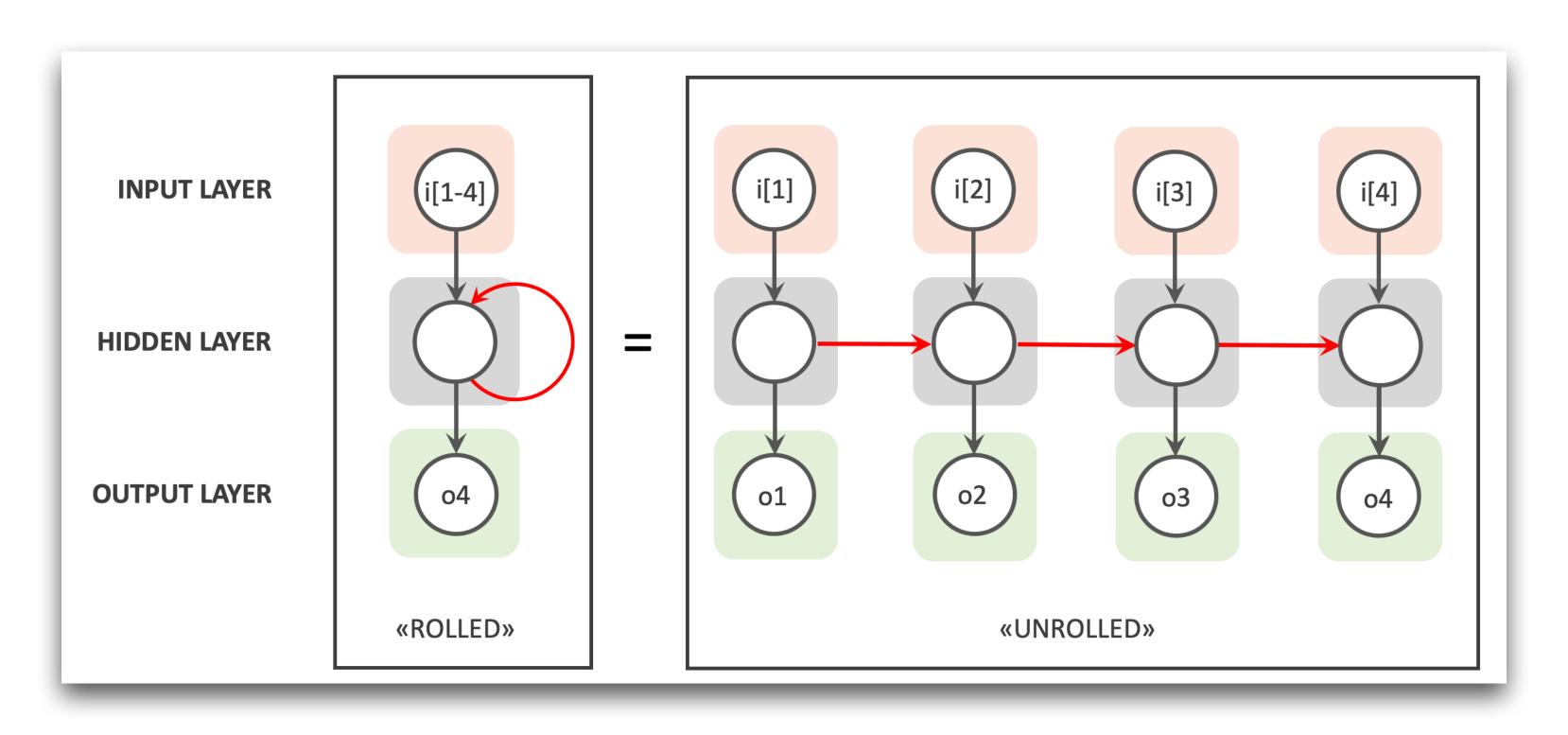
Backpropagation and Gradient Descent

- Backpropagation (a method for efficiently computing the gradients) tells us *what the gradients are* for each weight.
 - Computing dependencies across layers through chain rule in computation graphs;
- Gradient descent (an optimization algorithm) tells us *how to update* the weight.
 - Iteratively optimizing to minimize the loss for each training example.
 - A forward pass (generating prediction) followed by a backward pass (computing the gradient and updating the weights).

Development of Neural Network Architectures 1990s - present

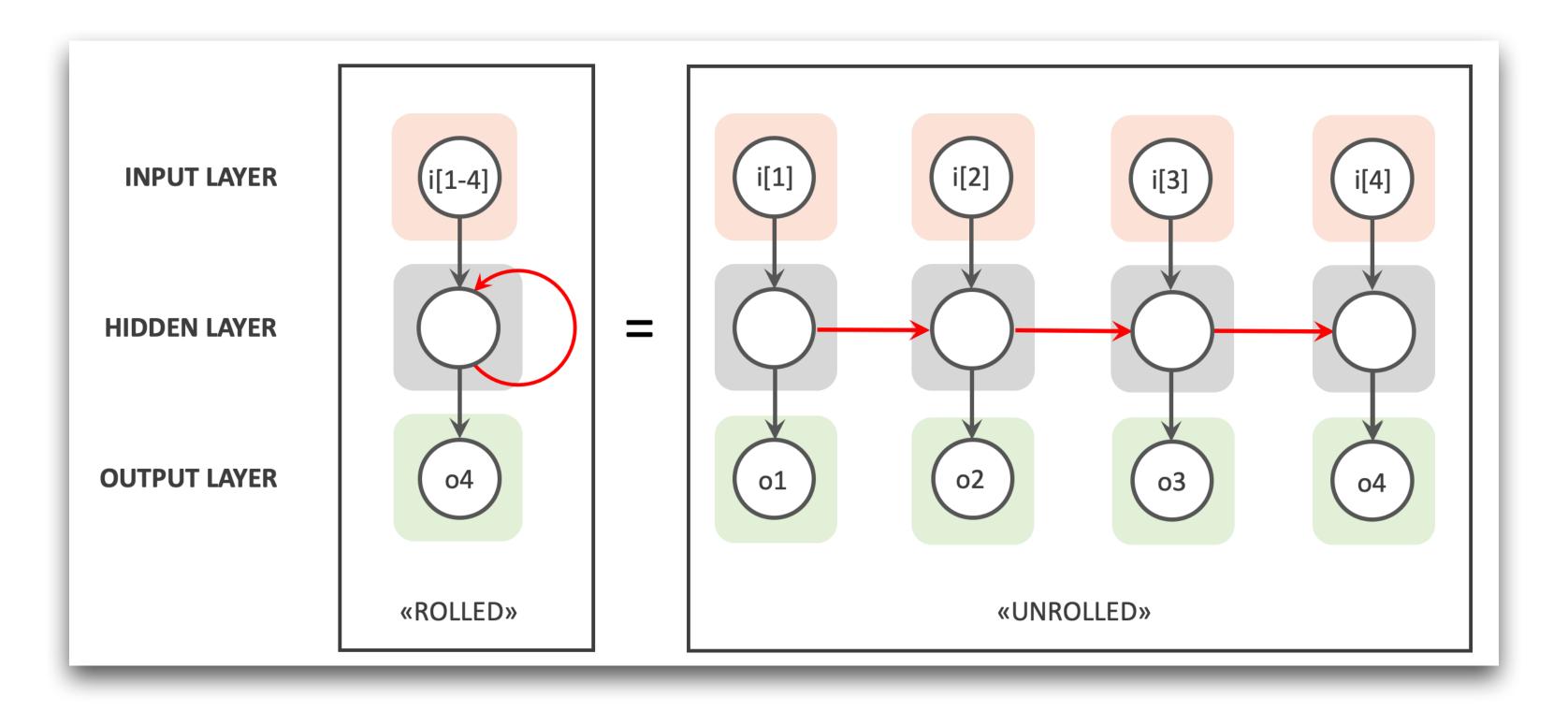
Recurrent Neural Network (RNN)

Introducing the notion of Time



Recurrent Neural Network (RNN)

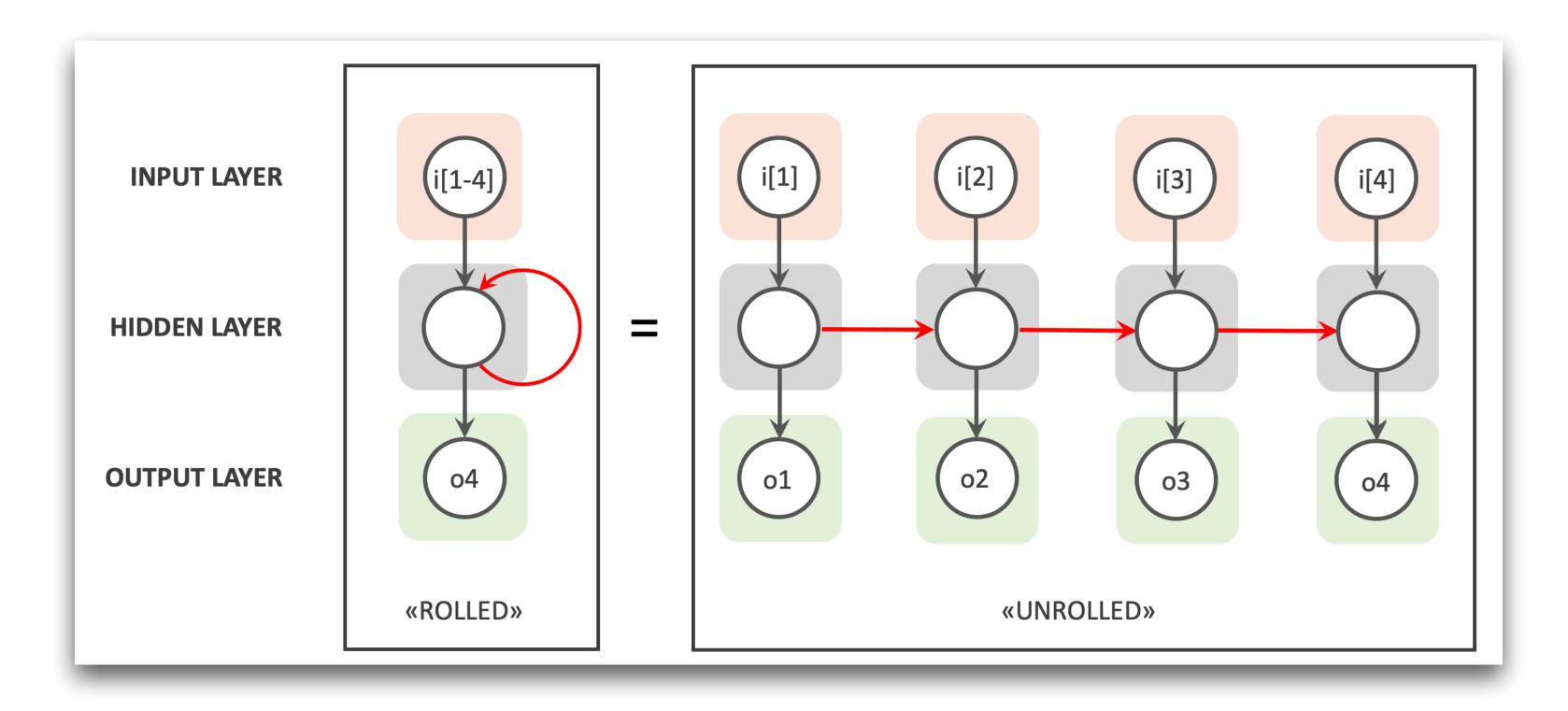
Introducing the notion of Time



• Motivation: Standard feed-forward networks couldn't handle sequential or time-dependent data, since they treat all inputs as independent.

Recurrent Neural Network (RNN)

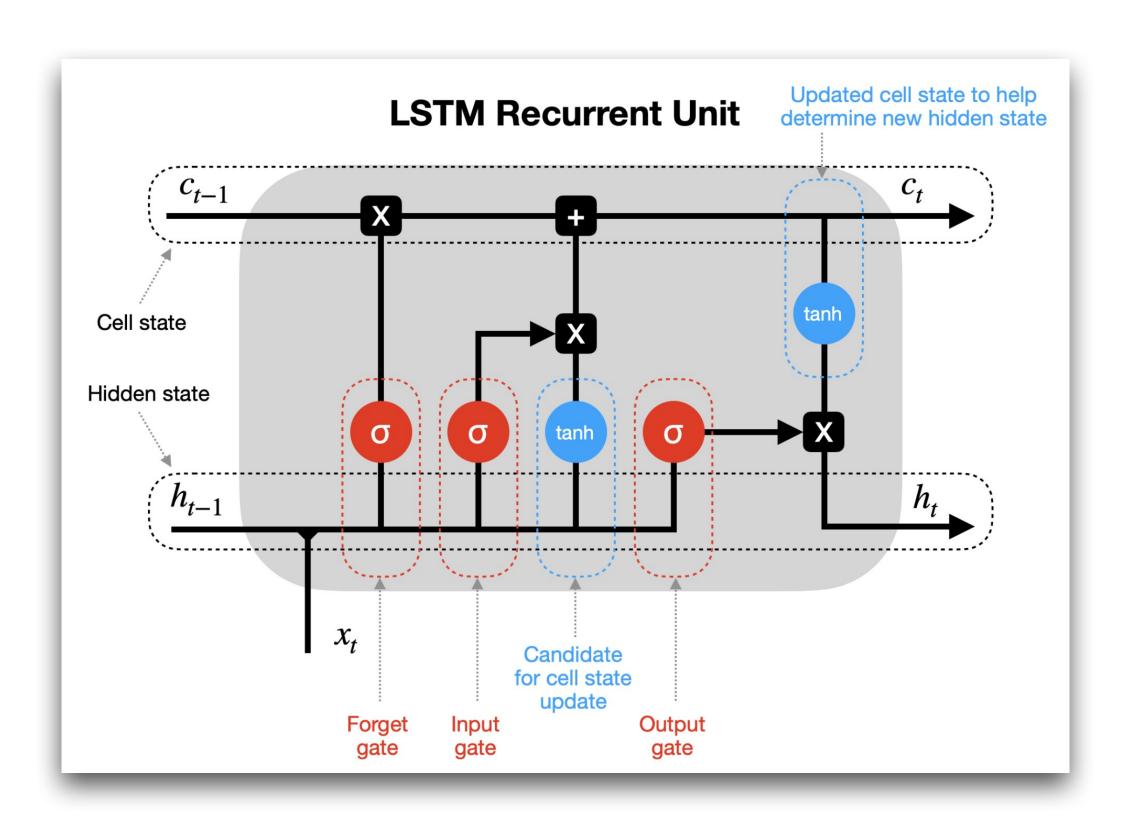
Introducing the notion of *Time*



- Motivation: Standard feed-forward networks couldn't handle sequential or timedependent data, since they treat all inputs as independent.
- Usefulness: RNNs introduce *recurrent connections* that let information persist across time steps, enabling modeling of language, speech, and temporal patterns.

Long Short-Term Memory (LSTM)

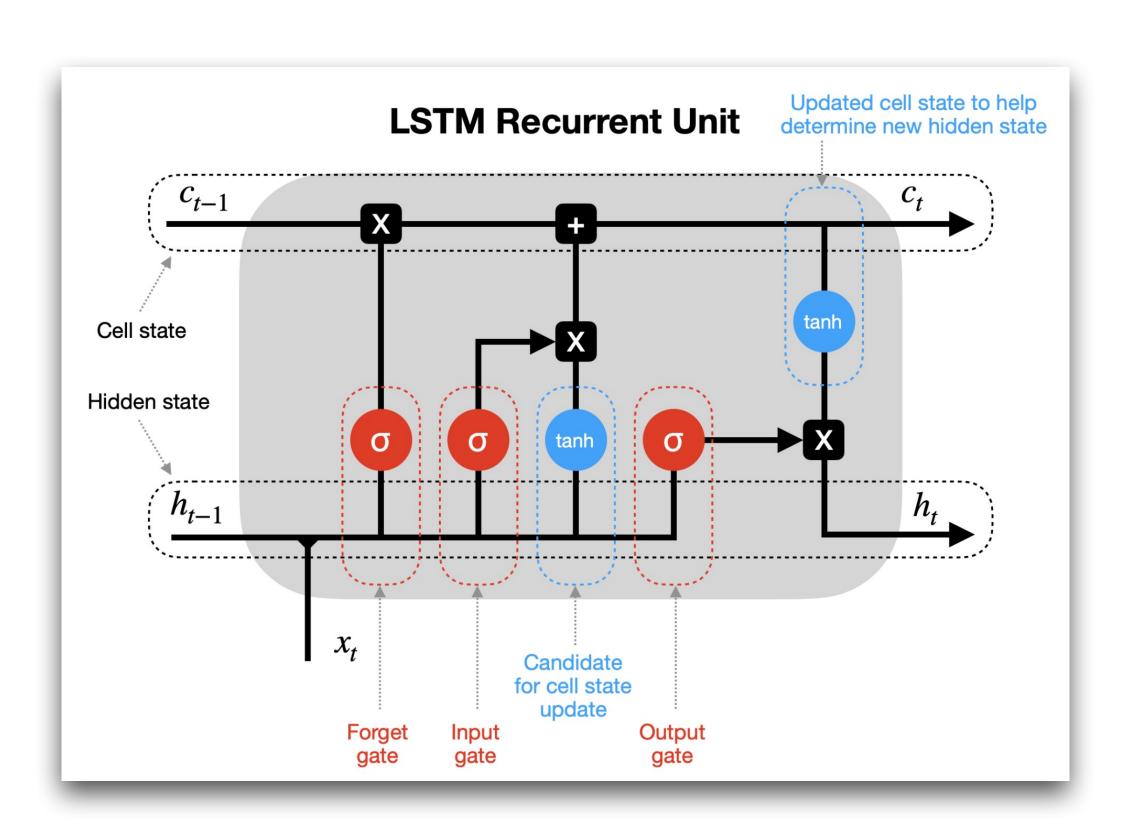
Handling long-distance dependencies through managing memory



Long Short-Term Memory (LSTM)

Handling long-distance dependencies through managing memory

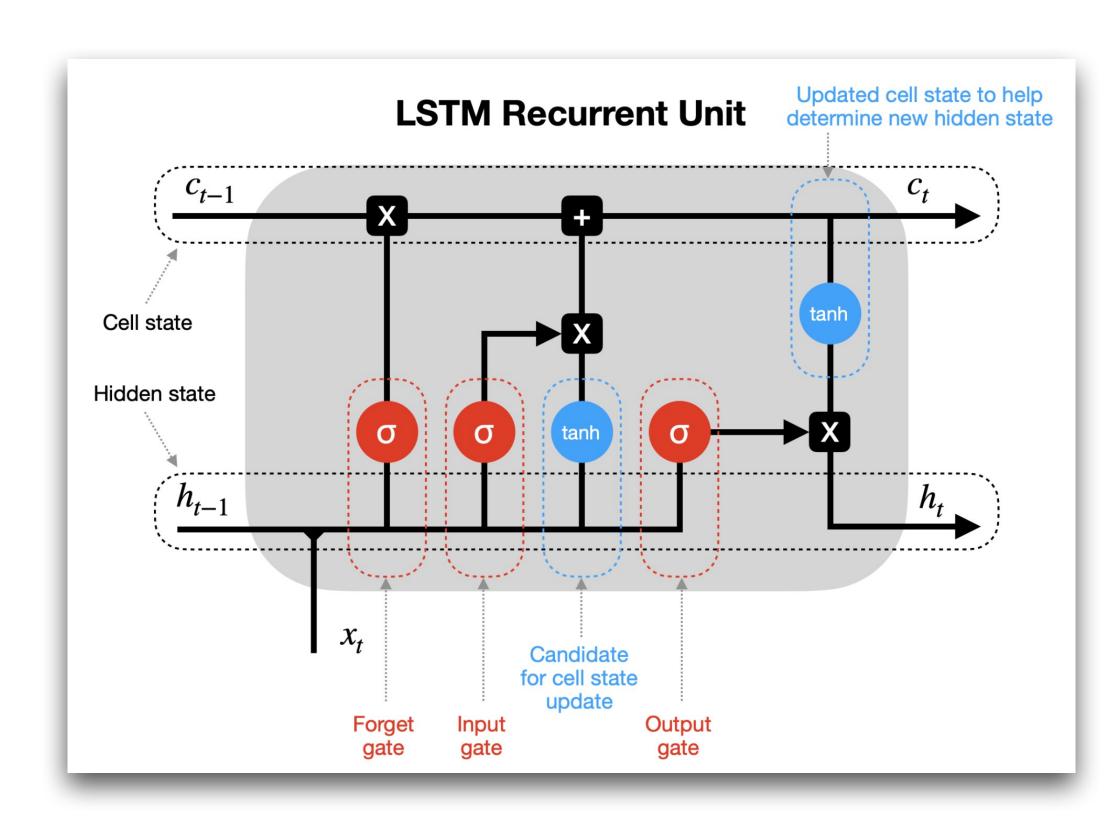
 Motivation: Vanilla RNNs struggled with long-term dependencies because of vanishing/exploding gradients during training.



Long Short-Term Memory (LSTM)

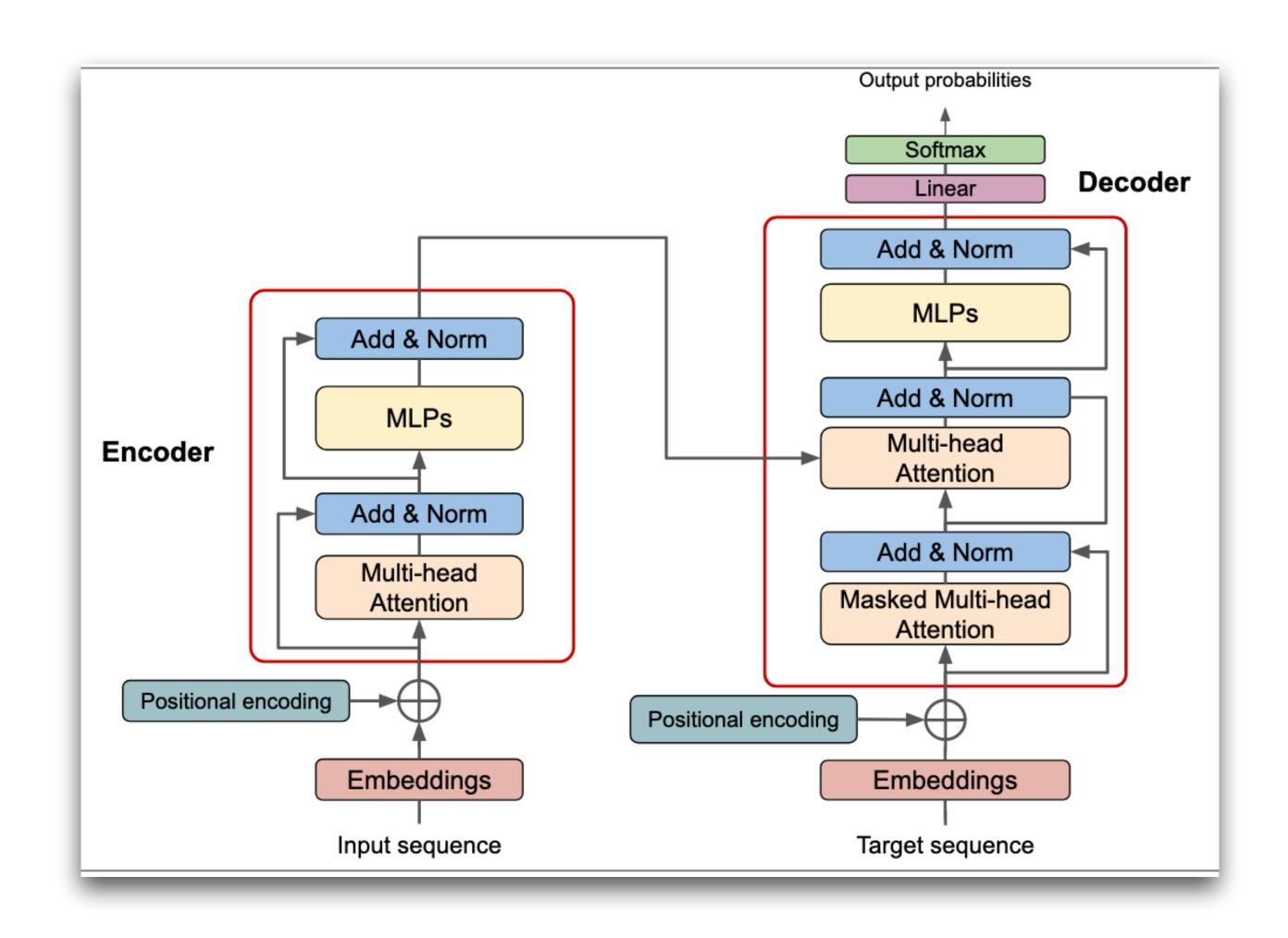
Handling long-distance dependencies through managing memory

- Motivation: Vanilla RNNs struggled with long-term dependencies because of vanishing/exploding gradients during training.
- Usefulness: LSTMs use gated cells to selectively remember or forget information, allowing stable learning over long sequences—powering early breakthroughs in speech recognition, translation, and text generation.



Transformers

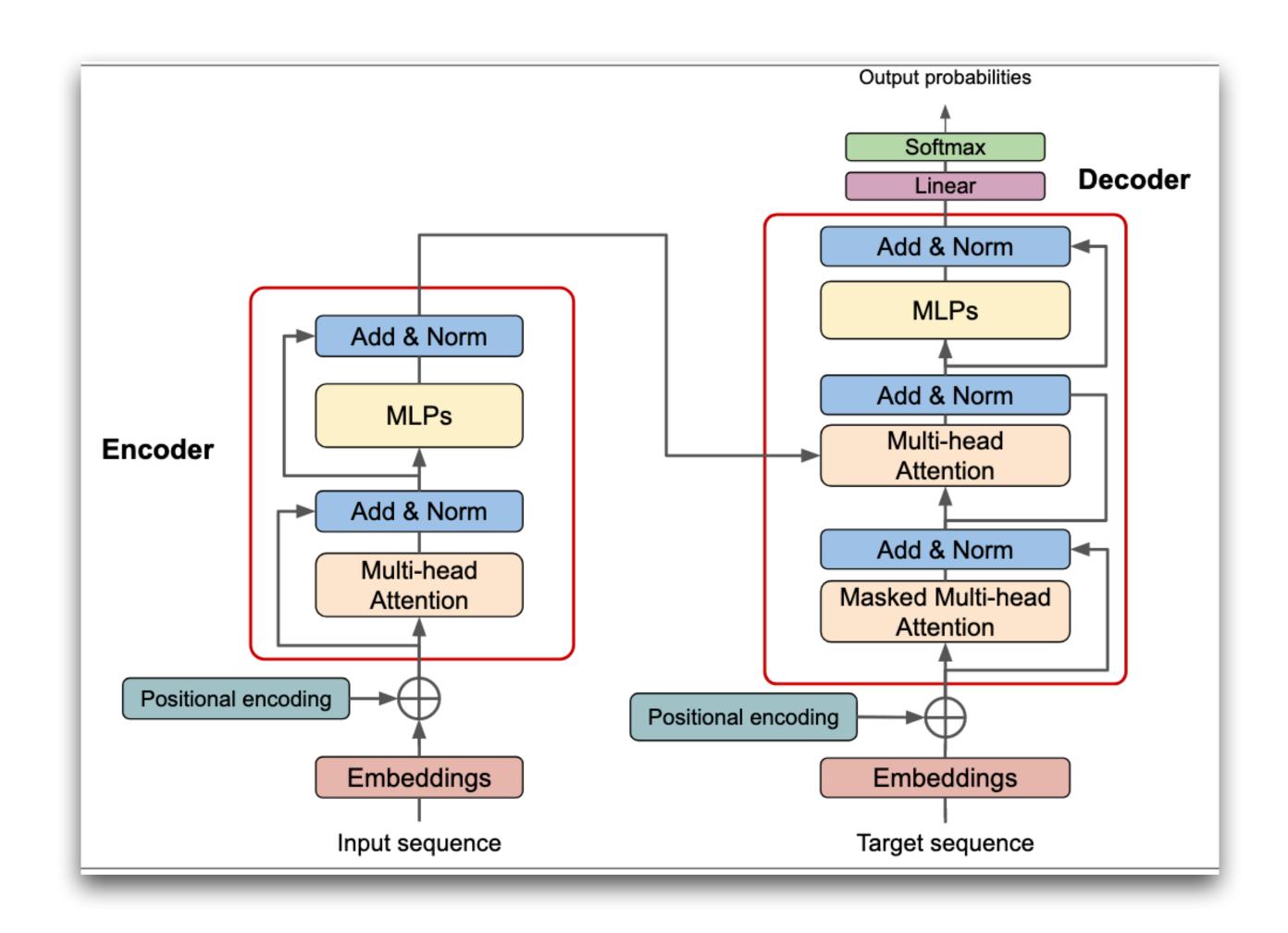
Global information access



Transformers

Global information access

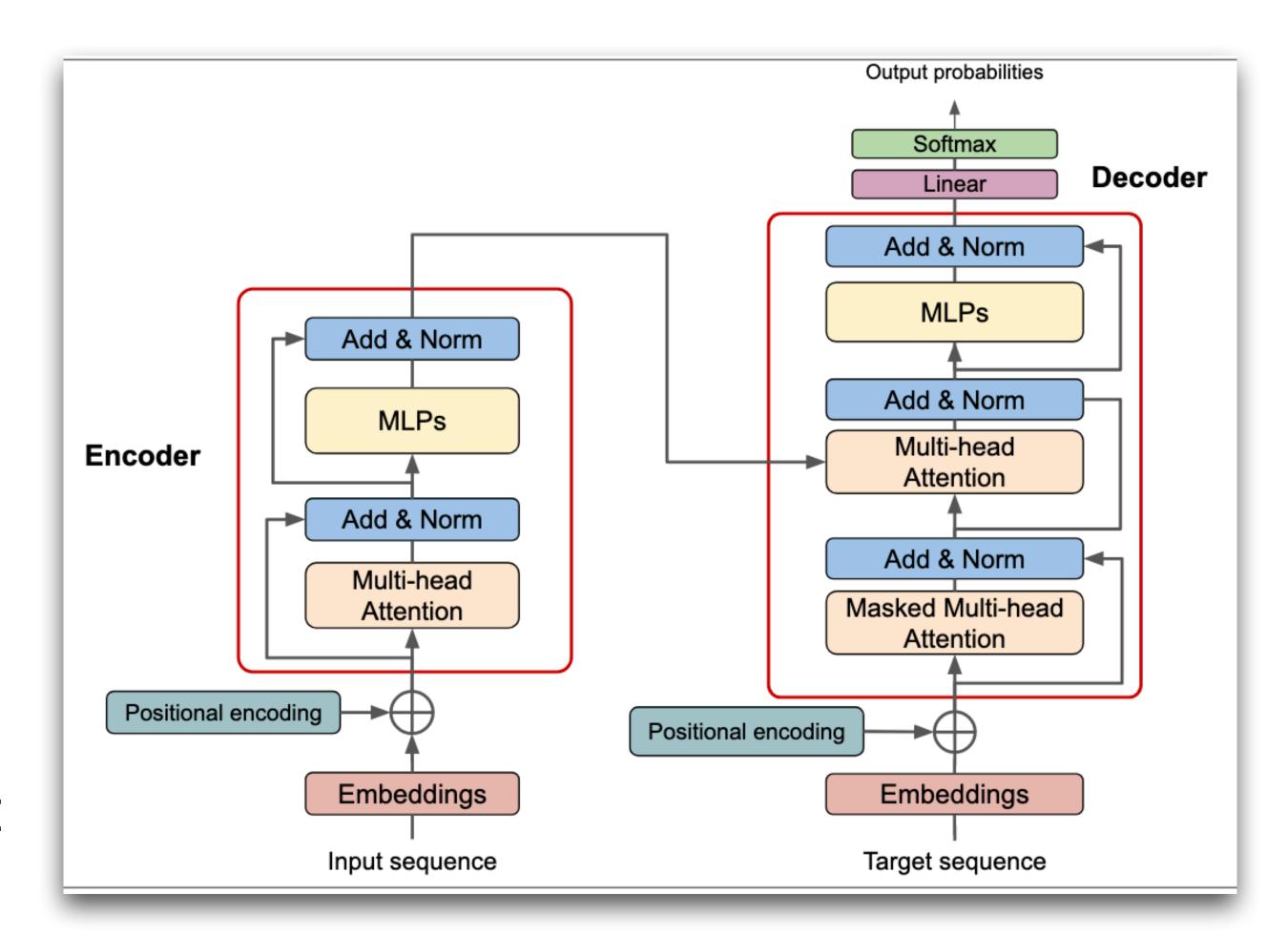
• Motivation: Even LSTMs process sequences step-by-step, limiting parallelization and global context access.



Transformers

Global information access

- Motivation: Even LSTMs process sequences step-by-step, limiting parallelization and global context access.
- Usefulness: Transformers replace recurrence with self-attention, letting the model directly relate every token to every other—making large-scale training efficient and forming the foundation of modern large language models.



Next Time (after fall break): Tom McCoy presenting on LLMs

Thank you for listening!

Slides are partially adapted from Bob Frank (left) and Tom McCoy (right)

And their slides are adpated from Jurafsky and Martin: https://web.stanford.edu/~jurafsky/slp3/