
Zhenghao Herbert Zhou, Oct 9th, 2025

Neural Networks
Langauge and Computation I, Fall 2025

Recap from Classification
Logistic Regression (from lecture on Sep 18th)

z =
n

∑
i=1

wixi + b Sigmoid: σ(z) =
1

1 + e−z decision(x) = {1, if σ(z) > 0.5
0, otherwise

Recap from Classification
Logistic Regression (from lecture on Sep 18th)

• Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

z =
n

∑
i=1

wixi + b Sigmoid: σ(z) =
1

1 + e−z decision(x) = {1, if σ(z) > 0.5
0, otherwise

Recap from Classification
Logistic Regression (from lecture on Sep 18th)

• Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

‣ Given a set of input features , learn a set of weight and a bias term ;xi wi b

z =
n

∑
i=1

wixi + b Sigmoid: σ(z) =
1

1 + e−z decision(x) = {1, if σ(z) > 0.5
0, otherwise

Recap from Classification
Logistic Regression (from lecture on Sep 18th)

• Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

‣ Given a set of input features , learn a set of weight and a bias term ;xi wi b

‣ Transform the weighted sum into range through Sigmoid function;z [0, 1]

z =
n

∑
i=1

wixi + b Sigmoid: σ(z) =
1

1 + e−z decision(x) = {1, if σ(z) > 0.5
0, otherwise

0

0.5

1

−6 −4 −2 0 2 4 6

Recap from Classification
Logistic Regression (from lecture on Sep 18th)

• Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

‣ Given a set of input features , learn a set of weight and a bias term ;xi wi b

‣ Transform the weighted sum into range through Sigmoid function;z [0, 1]

‣ Classification: use as the decision boundary.σ(z) = 0.5

z =
n

∑
i=1

wixi + b Sigmoid: σ(z) =
1

1 + e−z decision(x) = {1, if σ(z) > 0.5
0, otherwise

0

0.5

1

−6 −4 −2 0 2 4 6

Recap from Classification
Logistic Regression (from lecture on Sep 18th)

• Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

‣ Given a set of input features , learn a set of weight and a bias term ;xi wi b

‣ Transform the weighted sum into range through Sigmoid function;z [0, 1]

‣ Classification: use as the decision boundary.σ(z) = 0.5

z =
n

∑
i=1

wixi + b Sigmoid: σ(z) =
1

1 + e−z decision(x) = {1, if σ(z) > 0.5
0, otherwise

0

0.5

1

−6 −4 −2 0 2 4 6

Recap from Classification
Logistic Regression (from lecture on Sep 18th)

• Logistic Regression: learning to make a binary decision / classification
based on a set of input features.

‣ Given a set of input features , learn a set of weight and a bias term ;xi wi b

‣ Transform the weighted sum into range through Sigmoid function;z [0, 1]

‣ Classification: use as the decision boundary.σ(z) = 0.5

z =
n

∑
i=1

wixi + b Sigmoid: σ(z) =
1

1 + e−z decision(x) = {1, if σ(z) > 0.5
0, otherwise

0

0.5

1

−6 −4 −2 0 2 4 6

Another Way of Representing Logistic Regression
An example on decising whether you pass a class

Another Way of Representing Logistic Regression
An example on decising whether you pass a class
• Suppose you want a logistic

regression model outputing a binary
decision of {passing, failing} a class.

Another Way of Representing Logistic Regression
An example on decising whether you pass a class
• Suppose you want a logistic

regression model outputing a binary
decision of {passing, failing} a class.

• Features available:

‣ HW 1 (weight = 20%)

‣ HW 2 (weight = 30%)

‣ Exam (weight = 40%)

‣ Attendence (weight = 10%)

Another Way of Representing Logistic Regression
An example on decising whether you pass a class
• Suppose you want a logistic

regression model outputing a binary
decision of {passing, failing} a class.

• Features available:

‣ HW 1 (weight = 20%)

‣ HW 2 (weight = 30%)

‣ Exam (weight = 40%)

‣ Attendence (weight = 10%)

• Pass if final grade > 60%.

Another Way of Representing Logistic Regression
An example on decising whether you pass a class
• Suppose you want a logistic

regression model outputing a binary
decision of {passing, failing} a class.

• Features available:

‣ HW 1 (weight = 20%)

‣ HW 2 (weight = 30%)

‣ Exam (weight = 40%)

‣ Attendence (weight = 10%)

• Pass if final grade > 60%.

0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence

x4 =

Another Way of Representing Logistic Regression
An example on decising whether you pass a class
• Suppose you want a logistic

regression model outputing a binary
decision of {passing, failing} a class.

• Features available:

‣ HW 1 (weight = 20%)

‣ HW 2 (weight = 30%)

‣ Exam (weight = 40%)

‣ Attendence (weight = 10%)

• Pass if final grade > 60%.

0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence

x4 =

w1 = 0.2 w4 = 0.1w2 = 0.3 w3 = 0.4

Another Way of Representing Logistic Regression
An example on decising whether you pass a class
• Suppose you want a logistic

regression model outputing a binary
decision of {passing, failing} a class.

• Features available:

‣ HW 1 (weight = 20%)

‣ HW 2 (weight = 30%)

‣ Exam (weight = 40%)

‣ Attendence (weight = 10%)

• Pass if final grade > 60%.

0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence

x4 =

0.693

w1 = 0.2 w4 = 0.1w2 = 0.3 w3 = 0.4

Weighted sum:
4

∑
i=1

wixi

Another Way of Representing Logistic Regression
An example on decising whether you pass a class
• Suppose you want a logistic

regression model outputing a binary
decision of {passing, failing} a class.

• Features available:

‣ HW 1 (weight = 20%)

‣ HW 2 (weight = 30%)

‣ Exam (weight = 40%)

‣ Attendence (weight = 10%)

• Pass if final grade > 60%.

0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence

x4 =

0.693

w1 = 0.2 w4 = 0.1w2 = 0.3 w3 = 0.4

1

f(z) = {1, if z ≥ 0.6
0, otherwise

Weighted sum:
4

∑
i=1

wixi

Nonlinear  
activation fuction

This becomes an Artificial Neuron!
a.k.a. Perceptron

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

This becomes an Artificial Neuron!
a.k.a. Perceptron

• A perceptron is the simplest type of
artificial neuron:

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

This becomes an Artificial Neuron!
a.k.a. Perceptron

• A perceptron is the simplest type of
artificial neuron:

✴ It is a linear classifier that
computes a weighted sums of its
inputs;

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Inputs

Weights
Bias

Weighted sum

This becomes an Artificial Neuron!
a.k.a. Perceptron

• A perceptron is the simplest type of
artificial neuron:

✴ It is a linear classifier that
computes a weighted sums of its
inputs;

✴ It then applies a (nonlinear)
activation function — deciding
whether it activates;

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Inputs

Weights
Bias

Weighted sum

Nonlinear
transformation

This becomes an Artificial Neuron!
a.k.a. Perceptron

• A perceptron is the simplest type of
artificial neuron:

✴ It is a linear classifier that
computes a weighted sums of its
inputs;

✴ It then applies a (nonlinear)
activation function — deciding
whether it activates;

✴ And outputs a binary decision. x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Inputs

Weights
Bias

Weighted sum

Nonlinear
transformation

Output value

The Perceptron / Artificial Neuron
1958 - 1968

From Brain Neurons to the Perceptron
Inspiration: multiple inputs, weighted connections, one firing output.

(Left) By BruceBlaus - Own work, CC BY 3.0,  
https://commons.wikimedia.org/w/index.php?curid=28761830; 
(Bottom right) Mark I Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-
with-his-Mark-I-perceptronleft-and-a-graphical-representation-of_fig2_345813508

From Brain Neurons to the Perceptron
Inspiration: multiple inputs, weighted connections, one firing output.

(Left) By BruceBlaus - Own work, CC BY 3.0,  
https://commons.wikimedia.org/w/index.php?curid=28761830; 
(Bottom right) Mark I Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-
with-his-Mark-I-perceptronleft-and-a-graphical-representation-of_fig2_345813508

From Brain Neurons to the Perceptron
Inspiration: multiple inputs, weighted connections, one firing output.

(Left) By BruceBlaus - Own work, CC BY 3.0,  
https://commons.wikimedia.org/w/index.php?curid=28761830; 
(Bottom right) Mark I Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-
with-his-Mark-I-perceptronleft-and-a-graphical-representation-of_fig2_345813508

Frank Rosenblatt 1958

From Brain Neurons to the Perceptron
Inspiration: multiple inputs, weighted connections, one firing output.

(Left) By BruceBlaus - Own work, CC BY 3.0,  
https://commons.wikimedia.org/w/index.php?curid=28761830; 
(Bottom right) Mark I Perceptron: https://www.researchgate.net/figure/Frank-Rosenblatt-
with-his-Mark-I-perceptronleft-and-a-graphical-representation-of_fig2_345813508

Frank Rosenblatt 1958

Some Notations
y = σ(w ⋅ x + b) =

1
1 + exp(− (w ⋅ x + b))

Some Notations

• Represent the input feature values and the weights as vectors, and ;

‣ For the grading example, ;

x w

w = [w1, w2, w3, w4] = [0.2, 0.3, 0.5, 0.1]

y = σ(w ⋅ x + b) =
1

1 + exp(− (w ⋅ x + b))

Some Notations

• Represent the input feature values and the weights as vectors, and ;

‣ For the grading example, ;

x w

w = [w1, w2, w3, w4] = [0.2, 0.3, 0.5, 0.1]

• Therefore, , where represents dot product (element-wise
product between two vectors of the same size).

∑n
i=1 wixi = w ⋅ x ⋅

y = σ(w ⋅ x + b) =
1

1 + exp(− (w ⋅ x + b))

Some Notations

• Represent the input feature values and the weights as vectors, and ;

‣ For the grading example, ;

x w

w = [w1, w2, w3, w4] = [0.2, 0.3, 0.5, 0.1]

• Therefore, , where represents dot product (element-wise
product between two vectors of the same size).

∑n
i=1 wixi = w ⋅ x ⋅

• In practice, we incorporate the bias term into the vector representation, where
bias always gets weight = ;

‣ This gives us

b 1.0

w = [w1, w2, w3, w4, wb] = [0.2, 0.3, 0.5, 0.1, 1.0]

y = σ(w ⋅ x + b) =
1

1 + exp(− (w ⋅ x + b))

Notes on Nonlinear Activation Functions
Beyond sigmoid

Notes on Nonlinear Activation Functions
Beyond sigmoid
• In standard logistic regression, we use Sigmoid () as the activation function.

‣ We want the map any real value (from weighted sum) to to be
interpreted as probability.

σ

[0, 1]

Notes on Nonlinear Activation Functions
Beyond sigmoid
• In standard logistic regression, we use Sigmoid () as the activation function.

‣ We want the map any real value (from weighted sum) to to be
interpreted as probability.

σ

[0, 1]

• In the grading example, we use a step function: f(z) = {1, if z ≥ 0.6
0, otherwise

Notes on Nonlinear Activation Functions
Beyond sigmoid
• In standard logistic regression, we use Sigmoid () as the activation function.

‣ We want the map any real value (from weighted sum) to to be
interpreted as probability.

σ

[0, 1]

• In the grading example, we use a step function: f(z) = {1, if z ≥ 0.6
0, otherwise

Intuition: nonlinearity enables the
model to represent relations beyond

linear functions (i.e., cannot be
represented by matrix operations)!

* will come back to it later

Other Nonlinear Activation Functions
Choose activation functions wisely given your problem setting

tanh

tanh(z) =
ez − e−z

ez + e−z

Other Nonlinear Activation Functions
Choose activation functions wisely given your problem setting

tanh ReLU 
(Rectified Linear Unit)

ReLu(z) = max(z, 0)tanh(z) =
ez − e−z

ez + e−z

An Example Computation
Back to the grading example

0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence

x4 =

w1 = 0.2
w4 = 0.1w2 = 0.3 w3 = 0.4

An Example Computation
Back to the grading example

• Suppose we applied a curve and adds
5 points (i.e., 0.05%) to the grade.

0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence

x4 =

w1 = 0.2
w4 = 0.1w2 = 0.3 w3 = 0.4

An Example Computation
Back to the grading example

• Suppose we applied a curve and adds
5 points (i.e., 0.05%) to the grade.

0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence

x4 =

w1 = 0.2
w4 = 0.1w2 = 0.3 w3 = 0.4

0.05

wb = 1.0

 
curving
b =

An Example Computation
Back to the grading example

• Suppose we applied a curve and adds
5 points (i.e., 0.05%) to the grade.

• Then, we have vector representations:

‣ = [0.2, 0.3, 0.4, 0.1, 1.0];

‣ = [0.37, 0.82, 0.76, 0.69, 0.05];

w

b
0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence

x4 =

w1 = 0.2
w4 = 0.1w2 = 0.3 w3 = 0.4

0.05

wb = 1.0

 
curving
b =

An Example Computation
Back to the grading example

• Suppose we applied a curve and adds
5 points (i.e., 0.05%) to the grade.

• Then, we have vector representations:

‣ = [0.2, 0.3, 0.4, 0.1, 1.0];

‣ = [0.37, 0.82, 0.76, 0.69, 0.05];

w

b
0.37 0.82 0.76 0.69

HW1  
score

x1 = HW2  
score

x2 = exam  
score

x3 =  
attendence

x4 =

0.743

w1 = 0.2
w4 = 0.1w2 = 0.3 w3 = 0.4

1

f(z) = {1, if z ≥ 0.6
0, otherwise

0.05

wb = 1.0

• Then:
y = f(w ⋅ x + b)

= f(0.2 × 0.37 + 0.3 × 0.82 + 0.4 × 0.76 + 0.1 × 0.69 + 1.0 × 0.05)
= f(0.743) = Boolean(0.743 ≥ 0.6) = 1

 
curving
b =

Wait…. Where do weights come from?

The Perceptron Learning Rule
You need to do error-driven learning in order to “perceive” and “adapt”

w := w + η(y − ̂y)x

The Perceptron Learning Rule
You need to do error-driven learning in order to “perceive” and “adapt”

• Given an input-output pair where is a vector and :

‣ is the predicted label from the current set of weights;

‣ is the learning rate: how much to adjust each weight given a datapoint.

(x, y) x y ∈ {0,1}
̂y

η

w := w + η(y − ̂y)x

The Perceptron Learning Rule
You need to do error-driven learning in order to “perceive” and “adapt”

• Given an input-output pair where is a vector and :

‣ is the predicted label from the current set of weights;

‣ is the learning rate: how much to adjust each weight given a datapoint.

(x, y) x y ∈ {0,1}
̂y

η
• Intuition (very important!):

• If I made an error (differs from , so that), then update each
weight with the amount towards the correct direction (sign of).

• Each value of determines, for this example, how much is faulty /
responsible for this mis-classification!

̂y y (y − ̂y) = ± 1
wi ηxi y − ̂y

xi wi

w := w + η(y − ̂y)x

A Real-Time Illustration
Perceptron is really “perceiving and adapting” — aka learning!

https://vinizinho.net/projects/perceptron-viz/

Interium Summary 1
Logistic Regression → Artifical Neuron / Perceptron → Learning

Interium Summary 1
Logistic Regression → Artifical Neuron / Perceptron → Learning

• Logistic Regression is discriminative: unlike Naive Bayes, it
doesn’t care how is produced (i.e., not targeting to model the
distribution of). It focuses on learning the mapping from to .

x
x x y

Interium Summary 1
Logistic Regression → Artifical Neuron / Perceptron → Learning

• Logistic Regression is discriminative: unlike Naive Bayes, it
doesn’t care how is produced (i.e., not targeting to model the
distribution of). It focuses on learning the mapping from to .

x
x x y

• Logistic regressoin is a specific version of Perceptron (an
artificial neuron): where the nonlinear function is Sigmoid, and
there is only one output node for binary classification. x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Interium Summary 1
Logistic Regression → Artifical Neuron / Perceptron → Learning

• Logistic Regression is discriminative: unlike Naive Bayes, it
doesn’t care how is produced (i.e., not targeting to model the
distribution of). It focuses on learning the mapping from to .

x
x x y

• Logistic regressoin is a specific version of Perceptron (an
artificial neuron): where the nonlinear function is Sigmoid, and
there is only one output node for binary classification.

• Perceptron is inspired by brain neurons and was initially
invented to model “information detection, storage, and
recognition” (Rosenblatt 1958);

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Interium Summary 1
Logistic Regression → Artifical Neuron / Perceptron → Learning

• Logistic Regression is discriminative: unlike Naive Bayes, it
doesn’t care how is produced (i.e., not targeting to model the
distribution of). It focuses on learning the mapping from to .

x
x x y

• Logistic regressoin is a specific version of Perceptron (an
artificial neuron): where the nonlinear function is Sigmoid, and
there is only one output node for binary classification.

• Perceptron is inspired by brain neurons and was initially
invented to model “information detection, storage, and
recognition” (Rosenblatt 1958);

• Perceptron iteratively learns a linear decision boundary for
binary classification — we will come back to this intuition later~

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

The XOR Problem and The First AI Winter
1969 - 1980~ish

How Expressive is a Perceptron?
[Exercise] Let’s try representing logical gates!

• Can a Perceptron compute simple functions of input?

• Assume two inputs , use the following activation function:x1 and x2

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

AND OR

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

How Expressive is a Perceptron?
Sample Answer

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

AND

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

How Expressive is a Perceptron?
Sample Answer

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

AND

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

x1 x2 b = 1

1
1 −1

AND

z

f(z)

How Expressive is a Perceptron?
Sample Answer

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

AND OR

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

x1 x2 b = 1

1
1 −1

AND

z

f(z)

x1 x2 b = 1

1
1 0

OR

z

f(z)

Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

OR

Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

XOROR

Introducing another operator: XOR
[Exercise] Let’s try representing the XOR gate!

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

XOROR

Perceptrons are Linear Classifiers
Learning decision boundaries

Perceptrons are Linear Classifiers
Learning decision boundaries

• Given the current step-wise activation function, our perceptrons define an equation
of a line in a 2D space (2D for 2 inputs):

‣

‣ In standard linear format:

w1x1 + w2x2 + b = 0

x2 = (−w1/w2)x1 + (−b)/w2

Perceptrons are Linear Classifiers
Learning decision boundaries

• Given the current step-wise activation function, our perceptrons define an equation
of a line in a 2D space (2D for 2 inputs):

‣

‣ In standard linear format:

w1x1 + w2x2 + b = 0

x2 = (−w1/w2)x1 + (−b)/w2

• In the 2D space we are familiar with, this defines a decision boundary.

‣ Output = 0 if the input point is on one side of the line;

‣ Output = 1 if the input point is on the other side of the line.

Perceptrons are Linear Classifiers
Learning decision boundaries

• Given the current step-wise activation function, our perceptrons define an equation
of a line in a 2D space (2D for 2 inputs):

‣

‣ In standard linear format:

w1x1 + w2x2 + b = 0

x2 = (−w1/w2)x1 + (−b)/w2

• In the 2D space we are familiar with, this defines a decision boundary.

‣ Output = 0 if the input point is on one side of the line;

‣ Output = 1 if the input point is on the other side of the line.

• A good perceptron should be able to find a decision boundary that perfectly
separates the 0 points from the 1 points — linearly separability!

Perceptron’s Decision Boundaries
Visualizing the decision boundaries for AND and OR

0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a) x1 AND x2 b) x1 OR x2 c) x1 XOR x2

?

Perceptron’s Decision Boundaries
Visualizing the decision boundaries for AND and OR

0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a) x1 AND x2 b) x1 OR x2 c) x1 XOR x2

?

AND and OR are linearly separable!

Perceptron’s Decision Boundaries
Visualizing the decision boundaries for XOR

0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a) x1 AND x2 b) x1 OR x2 c) x1 XOR x2

?

Perceptron’s Decision Boundaries
Visualizing the decision boundaries for XOR

0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a) x1 AND x2 b) x1 OR x2 c) x1 XOR x2

?

XOR is NOT linearly separable!

The AI Winter
10 years from prosperity to fall

• When Perceptron was introduced, it was
quite exciting to have a machine that could
learn from experience.

• This resulted in some vintage AI hype!

✴ Optimism ran wild: newspapers
proclaimed that the perceptron would
one day “walk, talk, see, and be
conscious of its own existence.”

✴ Lots of research fundings.
NYT, via StefanoErmon on Twitter
https://x.com/StefanoErmon/status/
936396977218056192?lang=en

The AI Winter
10 years from prosperity to fall

Minsky & Papert 1969

The AI Winter
10 years from prosperity to fall

• Minsky & Papert published a book named
Perceptrons in 1969, a rigorous analysis showing that
single-layer perceptrons could only learn linearly
separable functions.

‣ Highlighting the XOR problem.

Minsky & Papert 1969

The AI Winter
10 years from prosperity to fall

• Minsky & Papert published a book named
Perceptrons in 1969, a rigorous analysis showing that
single-layer perceptrons could only learn linearly
separable functions.

‣ Highlighting the XOR problem.

Minsky & Papert 1969

The AI Winter
10 years from prosperity to fall

• Minsky & Papert published a book named
Perceptrons in 1969, a rigorous analysis showing that
single-layer perceptrons could only learn linearly
separable functions.

‣ Highlighting the XOR problem.

• This resulted in the first AI winter:

✴ Research funding agencies concluded that neural
networks had hit a theoretical dead end.

✴ AI research shifted towards symbolic logic, expert
systems, rule-based reasoning (n-gram models
were born in this stage!)

Minsky & Papert 1969

Interium Summary 2

• The XOR Problem demonstrates a crucial limit of a single-neuron perceptron.

• Perceptron can only learn linearly separable patterns.

• This triggers the first AI winter after the initial AI hype for 10 years.

0
0 1

1

x1

x2

0
0 1

1

x1

x2

0
0 1

1

x1

x2

a) x1 AND x2 b) x1 OR x2 c) x1 XOR x2

?

The Revival of Neural Networks
1980s

One Solution to the XOR Problem
What if we use more than one layer? y = {0, if w ⋅ x + b ≤ 0

1, if w ⋅ x + b > 0

One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

• XOR = exclusive OR: x1 OR x2, but not both

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

• Is it possible to do it compositionally?

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

• Is it possible to do it compositionally?

• Let h1 = (x1 OR x2), h2 = (x1 AND x2)

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

• Is it possible to do it compositionally?

• Let h1 = (x1 OR x2), h2 = (x1 AND x2)

• Then, (x1 XOR x2) == h1 AND (NOT h2)

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

• Is it possible to do it compositionally?

• Let h1 = (x1 OR x2), h2 = (x1 AND x2)

• Then, (x1 XOR x2) == h1 AND (NOT h2)

• We do know how to express AND, and here is a simple tweak for NOT:

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

• Is it possible to do it compositionally?

• Let h1 = (x1 OR x2), h2 = (x1 AND x2)

• Then, (x1 XOR x2) == h1 AND (NOT h2)

• We do know how to express AND, and here is a simple tweak for NOT:

x1 AND (NOT x2)

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

x1 x2 b = 1

1
−2 0

z

f(z)

y

One Solution to the XOR Problem
What if we use more than one layer?

• Here is one way to think about it. By definition:

• XOR = exclusive OR: x1 OR x2, but not both

• Formally: (x1 OR x2) AND (NOT (x1 AND x2))

• Is it possible to do it compositionally?

• Let h1 = (x1 OR x2), h2 = (x1 AND x2)

• Then, (x1 XOR x2) == h1 AND (NOT h2)

• We do know how to express AND, and here is a simple tweak for NOT:

x1 AND (NOT x2)

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

x1 x2 b = 1

1
−2 0

z

f(z)

y Notation:
collapse the
nonlinear
transformation 
into a single node

One Solution to the XOR Problem
What if we use more than one layers?

• Here is one implementation:

x1 x2 b = 1

1 −1
0

x1 XOR x2

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

One Solution to the XOR Problem
What if we use more than one layers?

• Component 1: the OR gate

x1 x2 b = 1

1 −1
0

x1 XOR x2

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

x1 x2 b = 1

1
1 0

y

z

f(z)

💡 x1 OR x2

One Solution to the XOR Problem
What if we use more than one layers?

• Component 2: the AND gate

x1 x2 b = 1

1 −1
0

x1 XOR x2

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

x1 x2 b = 1

1
1 −1

y

z

f(z)

💡 x1 AND x2

One Solution to the XOR Problem
What if we use more than one layers?

• Component 3: the AND gate with NOT

x1 x2 b = 1

1 −1
0

x1 XOR x2

y = {0, if w ⋅ x + b ≤ 0
1, if w ⋅ x + b > 0

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

💡

x1 x2 b = 1

1
−2 0

z

f(z)

y

x1 AND (NOT x2)

One Solution to the XOR Problem
Let’s verify!

x1 x2 h10 h20 h1 h2 y0 y

0 0 0 -1 0 0 0 0

0 1 1 0 1 0 1 1

1 0 1 0 1 0 1 1

1 1 2 1 1 1 -1 0

after transformation through f

x1 x2 b = 1

1 −1
0

x1 XOR x2

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

Before transformation through f

One Solution to the XOR Problem
Let’s verify!

x1 x2 h10 h20 h1 h2 y0 y

0 0 0 -1 0 0 0 0

0 1 1 0 1 0 1 1

1 0 1 0 1 0 1 1

1 1 2 1 1 1 -1 0
x1 x2 b = 1

1 −1
0

x1 XOR x2

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

One Solution to the XOR Problem
Let’s verify!

x1 x2 h10 h20 h1 h2 y0 y

0 0 0 -1 0 0 0 0

0 1 1 0 1 0 1 1

1 0 1 0 1 0 1 1

1 1 2 1 1 1 -1 0
x1 x2 b = 1

1 −1
0

x1 XOR x2

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

OR

One Solution to the XOR Problem
Let’s verify!

x1 x2 h10 h20 h1 h2 y0 y

0 0 0 -1 0 0 0 0

0 1 1 0 1 0 1 1

1 0 1 0 1 0 1 1

1 1 2 1 1 1 -1 0
x1 x2 b = 1

1 −1
0

x1 XOR x2

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

ANDOR

One Solution to the XOR Problem
Let’s verify!

x1 x2 h10 h20 h1 h2 y0 y

0 0 0 -1 0 0 0 0

0 1 1 0 1 0 1 1

1 0 1 0 1 0 1 1

1 1 2 1 1 1 -1 0
x1 x2 b = 1

1 −1
0

x1 XOR x2

h1f(z)

y

h2

11 1

b = 1
f(z)

f(z)

1 −2 0

ANDOR XOR

Why Adding a Layer Solves the Problem?
Key Idea = using nonlinear transformation at intermediate stages

0

0 1

1

x1

x2

a) The original x space

0

0 1

1

h1

h2

2

b) The new (linearly separable) h space

Why Adding a Layer Solves the Problem?
Key Idea = using nonlinear transformation at intermediate stages

• For a Perceptron, the nonlinearly
transformated result directly becomes
the output;

➡ There is no chance for the model to
do further computation on it;

0

0 1

1

x1

x2

a) The original x space

0

0 1

1

h1

h2

2

b) The new (linearly separable) h space

Why Adding a Layer Solves the Problem?
Key Idea = using nonlinear transformation at intermediate stages

• For a Perceptron, the nonlinearly
transformated result directly becomes
the output;

➡ There is no chance for the model to
do further computation on it;

0

0 1

1

x1

x2

a) The original x space

0

0 1

1

h1

h2

2

b) The new (linearly separable) h space

• For a two-layer neural network: it can use the nonlinear transformation of the
first layer to extract whatever useful features (in our case: AND and OR);

Why Adding a Layer Solves the Problem?
Key Idea = using nonlinear transformation at intermediate stages

• For a Perceptron, the nonlinearly
transformated result directly becomes
the output;

➡ There is no chance for the model to
do further computation on it;

0

0 1

1

x1

x2

a) The original x space

0

0 1

1

h1

h2

2

b) The new (linearly separable) h space

• For a two-layer neural network: it can use the nonlinear transformation of the
first layer to extract whatever useful features (in our case: AND and OR);

• And it can use the extracted hidden features to do more computation (further
nonlinear transformation) — it could be that those intermediate features are
transformed to a linearly separable space!

More on Nonlinearity
Nonlinear transformation are extremely powerful

https://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture6.pdf

Learning a good quadratic function

Transform original data {xn, yn} to {zn = �(xn), yn}
Solve a linear problem on {zn, yn} using your favorite algorithm A to
get a good model w̃
Return the model h(x) = sign(w̃T�(x))

More on Nonlinearity
Nonlinear transformation are extremely powerful

https://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture6.pdf

Learning a good quadratic function

Transform original data {xn, yn} to {zn = �(xn), yn}
Solve a linear problem on {zn, yn} using your favorite algorithm A to
get a good model w̃
Return the model h(x) = sign(w̃T�(x))

More on Nonlinearity
Nonlinear transformation are extremely powerful

https://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture6.pdf

Learning a good quadratic function

Transform original data {xn, yn} to {zn = �(xn), yn}
Solve a linear problem on {zn, yn} using your favorite algorithm A to
get a good model w̃
Return the model h(x) = sign(w̃T�(x))

e.g. Tranforming to the
Polar coordinate to
make an originally non-
linearly-separable
dataset separable!

Generalizing the Architecture
From Logistic Regression to Multinomial Logistic Regression

Generalizing the Architecture
From Logistic Regression to Multinomial Logistic Regression

• Let’s consider a simple generalization:
imagine we are doing a classification task
with multiple classes / labels. How to
represent multiple outcomes?

Generalizing the Architecture
From Logistic Regression to Multinomial Logistic Regression

• Let’s consider a simple generalization:
imagine we are doing a classification task
with multiple classes / labels. How to
represent multiple outcomes?

• Two tweaks:

‣ Have multiuple output nodes (one per
class);

‣ Switch the activation function to
softmax;

Generalizing the Architecture
From Logistic Regression to Multinomial Logistic Regression

• Let’s consider a simple generalization:
imagine we are doing a classification task
with multiple classes / labels. How to
represent multiple outcomes?

• Two tweaks:

‣ Have multiuple output nodes (one per
class);

‣ Switch the activation function to
softmax;

• This is also known as multinomial logistic
regression.

Generalizing the Architecture
Multinomial Logistic Regression

• Suppose we have input features and classes;

• One way to represent it is a 1-layer neural network with multiple output nodes
(i.e., a layer of neurons)

• We don’t count the input layer as a layer, so this network has 1 layer.

n m

 is a matrixW

 is a vectorb
Input a list
of scalars

 is a vector: y = [y1, ⋯, ym]
y = softmax(Wx + b)

Softmax: A generalization of Sigmoid
Getting a probability distribution for multi-class classification!

Softmax: A generalization of Sigmoid
Getting a probability distribution for multi-class classification!

• Sigmoid takes a real value and outputs a probability in range ;[0, 1]

Softmax: A generalization of Sigmoid
Getting a probability distribution for multi-class classification!

• Sigmoid takes a real value and outputs a probability in range ;[0, 1]
• Softmax takes a list of real values and outputs a probability distribution (a list

of the same length as the input that sums to).1

Softmax: A generalization of Sigmoid
Getting a probability distribution for multi-class classification!

• Sigmoid takes a real value and outputs a probability in range ;[0, 1]
• Softmax takes a list of real values and outputs a probability distribution (a list

of the same length as the input that sums to).1
• Formally: for a vector of dimensionality :z k

softmax(z) =
exp(z1)

∑k
i=1 exp(zi)

,
exp(z2)

∑k
i=1 exp(zi)

, …,
exp(zk)

∑k
i=1 exp(zi)

Softmax: A generalization of Sigmoid
Getting a probability distribution for multi-class classification!

• Sigmoid takes a real value and outputs a probability in range ;[0, 1]
• Softmax takes a list of real values and outputs a probability distribution (a list

of the same length as the input that sums to).1
• Formally: for a vector of dimensionality :z k

softmax(z) =
exp(z1)

∑k
i=1 exp(zi)

,
exp(z2)

∑k
i=1 exp(zi)

, …,
exp(zk)

∑k
i=1 exp(zi)

• An example:
z = [0.6, 1.1, − 1.5, 1.2, 3.2, − 1.1]

softmax(z) = [0.055, 0.090, 0.006, 0.099, 0.74, 0.010]

Softmax: A generalization of Sigmoid
Getting a probability distribution for multi-class classification!

• Sigmoid takes a real value and outputs a probability in range ;[0, 1]
• Softmax takes a list of real values and outputs a probability distribution (a list

of the same length as the input that sums to).1
• Formally: for a vector of dimensionality :z k

softmax(z) =
exp(z1)

∑k
i=1 exp(zi)

,
exp(z2)

∑k
i=1 exp(zi)

, …,
exp(zk)

∑k
i=1 exp(zi)

• An example:
z = [0.6, 1.1, − 1.5, 1.2, 3.2, − 1.1]

softmax(z) = [0.055, 0.090, 0.006, 0.099, 0.74, 0.010]

Generalizing the Notations
Representing a list of neurons

Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

• Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

• Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

• Suppose we have 2 input features and 3 neurons:

Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

• Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

• Suppose we have 2 input features and 3 neurons:

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] =
1.4 × 0.1 + (−0.2) × 1.0

1.4 × 2.0 + (−0.2) × (−0.1)
1.4 × (−0.3) + (−0.2) × 0.5

=
−0.06
2.82

−0.52

W x Wx

Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

• Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

• Suppose we have 2 input features and 3 neurons:

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] =
1.4 × 0.1 + (−0.2) × 1.0

1.4 × 2.0 + (−0.2) × (−0.1)
1.4 × (−0.3) + (−0.2) × 0.5

=
−0.06
2.82

−0.52

W x WxWeight connecting
1st input to 1st neuron

Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

• Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

• Suppose we have 2 input features and 3 neurons:

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] =
1.4 × 0.1 + (−0.2) × 1.0

1.4 × 2.0 + (−0.2) × (−0.1)
1.4 × (−0.3) + (−0.2) × 0.5

=
−0.06
2.82

−0.52

W x WxWeight connecting
1st input to 1st neuron

Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

• Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

• Suppose we have 2 input features and 3 neurons:

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] =
1.4 × 0.1 + (−0.2) × 1.0

1.4 × 2.0 + (−0.2) × (−0.1)
1.4 × (−0.3) + (−0.2) × 0.5

=
−0.06
2.82

−0.52

W x WxWeight connecting
1st input to 1st neuron

Weight connecting 2nd
input to 3rd neuron

Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

• Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

• Suppose we have 2 input features and 3 neurons:

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] =
1.4 × 0.1 + (−0.2) × 1.0

1.4 × 2.0 + (−0.2) × (−0.1)
1.4 × (−0.3) + (−0.2) × 0.5

=
−0.06
2.82

−0.52

W x WxWeight connecting
1st input to 1st neuron

Weight connecting 2nd
input to 3rd neuron

Generalizing the Notations
Representing a list of neurons

• Previously, we have only 1 neuron, so the weights are represented as a vector.

• Now, we have multiple neurons in the layer, and each neuron is connected to
all the inputs, so we (naturally) need a matrix to represent the weights.

• Suppose we have 2 input features and 3 neurons:

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] =
1.4 × 0.1 + (−0.2) × 1.0

1.4 × 2.0 + (−0.2) × (−0.1)
1.4 × (−0.3) + (−0.2) × 0.5

=
−0.06
2.82

−0.52

W x Wx

In general: position in is the weight connecting input to neuron .[i, j] W j i

Weight connecting
1st input to 1st neuron

Weight connecting 2nd
input to 3rd neuron

Generalizing the Notations, cont.
Handling the Bias Term

• As before, we incorporeate the bias vector into and by adding a
constant value into the input vector, as follows:

b W x
1

Generalizing the Notations, cont.
Handling the Bias Term

• As before, we incorporeate the bias vector into and by adding a
constant value into the input vector, as follows:

b W x
1

W x Wx + b

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] + [
0.2
1.0

−0.3] = [
0.14
3.82

−0.82]
b

Generalizing the Notations, cont.
Handling the Bias Term

• As before, we incorporeate the bias vector into and by adding a
constant value into the input vector, as follows:

b W x
1

W x Wx + b

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] + [
0.2
1.0

−0.3] = [
0.14
3.82

−0.82]
0.1 1.0 0.2
2.0 −0.1 1.0

−0.3 0.5 −0.3 [
1.4

−0.2
1.0] = [

0.14
3.82

−0.82]
b W x Wx + b

Generalizing the Notations, cont.
Handling the Bias Term

• As before, we incorporeate the bias vector into and by adding a
constant value into the input vector, as follows:

b W x
1

W x Wx + b

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] + [
0.2
1.0

−0.3] = [
0.14
3.82

−0.82]
0.1 1.0 0.2
2.0 −0.1 1.0

−0.3 0.5 −0.3 [
1.4

−0.2
1.0] = [

0.14
3.82

−0.82]
b W b x Wx + b

Generalizing the Notations, cont.
Handling the Bias Term

• As before, we incorporeate the bias vector into and by adding a
constant value into the input vector, as follows:

b W x
1

W x Wx + b

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] + [
0.2
1.0

−0.3] = [
0.14
3.82

−0.82]
0.1 1.0 0.2
2.0 −0.1 1.0

−0.3 0.5 −0.3 [
1.4

−0.2
1.0] = [

0.14
3.82

−0.82]
b W b x Wx + b

Generalizing the Notations, cont.
Handling the Bias Term

• As before, we incorporeate the bias vector into and by adding a
constant value into the input vector, as follows:

b W x
1

W x Wx + b

Add as another column of , and stick a to the input vector .b W 1 x

0.1 1.0
2.0 −0.1

−0.3 0.5
[1.4

−0.2] + [
0.2
1.0

−0.3] = [
0.14
3.82

−0.82]
0.1 1.0 0.2
2.0 −0.1 1.0

−0.3 0.5 −0.3 [
1.4

−0.2
1.0] = [

0.14
3.82

−0.82]
b W b x Wx + b

Generalizing the Notations, cont.
Folding the nonlinear transformation into the neurons

Generalizing the Notations, cont.
Folding the nonlinear transformation into the neurons

• A neuron in a neural network computes the linearly transformed weighted
sum: , where can be softmax, sigmoid, ReLU, tanh, etc.f(Wx + b) f

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Generalizing the Notations, cont.
Folding the nonlinear transformation into the neurons

• A neuron in a neural network computes the linearly transformed weighted
sum: , where can be softmax, sigmoid, ReLU, tanh, etc.f(Wx + b) f

• A layer is a list of neurons, defined by , , and the nonlinear transformation.W b

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Layer 1

Generalizing the Notations, cont.
Folding the nonlinear transformation into the neurons

• A neuron in a neural network computes the linearly transformed weighted
sum: , where can be softmax, sigmoid, ReLU, tanh, etc.f(Wx + b) f

• A layer is a list of neurons, defined by , , and the nonlinear transformation.W b

• Input nodes () don’t count as a layer; and output values also don’t.x

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Layer 1

Input values

Output values

Generalizing the Notations, cont.
Our XOR network is a two-layer neural network:

x1 x2 b = 1

1 −1
0

h1
f(z)

h

h2

11 1

b = 1f(z)

f(z)

1 −2 0

Output values

Input values

y

Generalizing the Notations, cont.
Our XOR network is a two-layer neural network:

x1 x2 b = 1

1 −1
0

h1
f(z)

h

h2

11 1

b = 1f(z)

f(z)

1 −2 0

Output values

Layer 1

Input values

y

Generalizing the Notations, cont.
Our XOR network is a two-layer neural network:

x1 x2 b = 1

1 −1
0

h1
f(z)

h

h2

11 1

b = 1f(z)

f(z)

1 −2 0

Output values

Layer 1

Input values

Layer 2

y

Generalizing the Notations, cont.
Multi-layer Neural Networks

𝑊1 𝑏1

Input layer (vector)x

𝑏2

𝑏3

𝑊2

𝑊3

y1 y3y2
This is a 3-layer
neural network

Generalizing the Notations, cont.
Multi-layer Neural Networks

𝑊1 𝑏1

Hidden state (vector)h1

Input layer (vector)x

𝑏2

𝑏3

𝑊2

𝑊3

h1 = ReLU(W1x + b1)

y1 y3y2
This is a 3-layer
neural network

Generalizing the Notations, cont.
Multi-layer Neural Networks

𝑊1 𝑏1

Hidden state (vector)h1

Input layer (vector)x

Hidden state (vector)h2

𝑏2

𝑏3

𝑊2

𝑊3

h2 = ReLU(W2h1 + b2)

h1 = ReLU(W1x + b1)

y1 y3y2
This is a 3-layer
neural network

Generalizing the Notations, cont.
Multi-layer Neural Networks

𝑊1 𝑏1

Hidden state (vector)h1

Input layer (vector)x

Hidden state (vector)h2

𝑏2

𝑏3

𝑊2

𝑊3
y = softmax(W3h2 + b3)

h2 = ReLU(W2h1 + b2)

h1 = ReLU(W1x + b1)

y1 y3y2
This is a 3-layer
neural network

Generalizing the Notations, cont.
Multi-layer Neural Networks

𝑊1 𝑏1

Hidden state (vector)h1

Input layer (vector)x

Hidden state (vector)h2

Output (vector)y

𝑏2

𝑏3

𝑊2

𝑊3
y = softmax(W3h2 + b3)

h2 = ReLU(W2h1 + b2)

h1 = ReLU(W1x + b1)

y1 y3y2
This is a 3-layer
neural network

Terminology for this type of Neural Networks
Different names for the same architecture

Terminology for this type of Neural Networks
Different names for the same architecture

• Feedforward Neural Network (FFNN)

✴ Because layers are feeding foward to each other —
the output of layer becomes the input of layer ;l l + 1

Terminology for this type of Neural Networks
Different names for the same architecture

• Feedforward Neural Network (FFNN)

✴ Because layers are feeding foward to each other —
the output of layer becomes the input of layer ;l l + 1

• Fully-connected Neural Network (FCNN)

✴ From layer to layer , all nodes are connected to
all other nodes;

l l + 1

Terminology for this type of Neural Networks
Different names for the same architecture

• Feedforward Neural Network (FFNN)

✴ Because layers are feeding foward to each other —
the output of layer becomes the input of layer ;l l + 1

• Fully-connected Neural Network (FCNN)

✴ From layer to layer , all nodes are connected to
all other nodes;

l l + 1

• Multi-layer Perceptron (MLP)

✴ This generalizes a single-neuron Perceptron into a
multi-neuron, multi-layer network

Terminology for this type of Neural Networks
More generally, at the field level

Terminology for this type of Neural Networks
More generally, at the field level

• Connectionist Models

✴ Named after the school of thought “connectionism” (vs. “symbolism);

Terminology for this type of Neural Networks
More generally, at the field level

• Connectionist Models

✴ Named after the school of thought “connectionism” (vs. “symbolism);

• Parallel Distributed Processing (PDP)

✴ Each input is multiplied by a weight, and such computations are
independent from each other, thus can be done in parallel / simultaneously.

Terminology for this type of Neural Networks
More generally, at the field level

• Connectionist Models

✴ Named after the school of thought “connectionism” (vs. “symbolism);

• Parallel Distributed Processing (PDP)

✴ Each input is multiplied by a weight, and such computations are
independent from each other, thus can be done in parallel / simultaneously.

• Deep Learning

✴ Recent branding for neural networks with many layers;

Expressivity of Neural Networks
A significant upgrade

Expressivity of Neural Networks
A significant upgrade

• 1-layer Perceptrons are very limited;

Expressivity of Neural Networks
A significant upgrade

• 1-layer Perceptrons are very limited;

• But having one more layer makes it
much more powerful!

Expressivity of Neural Networks
A significant upgrade

• 1-layer Perceptrons are very limited;

• But having one more layer makes it
much more powerful!

• In fact, a 2-layer perceptron can
approximate any function to an
arbitrary degree of precision!

‣ This is an “in principle” claim;

‣ Assumes arbitrarily large layers (i.e.,
infinite neurons);

Interium Summary 3
From individual neurons to networks

Interium Summary 3
From individual neurons to networks

• Multi-layer perceptron / Neural networks can handle XOR.

Interium Summary 3
From individual neurons to networks

• Multi-layer perceptron / Neural networks can handle XOR.

• Multinomial logistic regressoin is a specific version of
neural networks;

Interium Summary 3
From individual neurons to networks

• Multi-layer perceptron / Neural networks can handle XOR.

• Multinomial logistic regressoin is a specific version of
neural networks;

• We use matrix and vector notations to represent neural
networks of arbitrary depths;

Interium Summary 3
From individual neurons to networks

• Multi-layer perceptron / Neural networks can handle XOR.

• Multinomial logistic regressoin is a specific version of
neural networks;

• We use matrix and vector notations to represent neural
networks of arbitrary depths;

• Neural networks that have more than 1 layers is
ARBITRARILY EXPRESSIVE in principle: they can
approximate any function given arbitrarily many neurons;

Back Propagation & Gradient Descent
1974 (first proposed) & 1986 (polularized)

Revisit the Perceptron Learning Rule
Error-based Learning as the secret sauce

Revisit the Perceptron Learning Rule
Error-based Learning as the secret sauce

• Remember the perceptron learning rule: w := w + η(y − ̂y)x

Revisit the Perceptron Learning Rule
Error-based Learning as the secret sauce

• Remember the perceptron learning rule: w := w + η(y − ̂y)x

‣ Roughly: update each weight proportional to the error (i.e., the loss between
predicted and true label).̂y y

Revisit the Perceptron Learning Rule
Error-based Learning as the secret sauce

• Remember the perceptron learning rule: w := w + η(y − ̂y)x

‣ Roughly: update each weight proportional to the error (i.e., the loss between
predicted and true label).̂y y

• How to do it for a neural network? — How to compute the error across multiple
layers?

Revisit the Perceptron Learning Rule
Error-based Learning as the secret sauce

• Remember the perceptron learning rule: w := w + η(y − ̂y)x

‣ Roughly: update each weight proportional to the error (i.e., the loss between
predicted and true label).̂y y

• How to do it for a neural network? — How to compute the error across multiple
layers?

‣ Assume we have some loss function that compute the difference between two
vectors: L(̂y − y)

Revisit the Perceptron Learning Rule
Error-based Learning as the secret sauce

• Remember the perceptron learning rule: w := w + η(y − ̂y)x

‣ Roughly: update each weight proportional to the error (i.e., the loss between
predicted and true label).̂y y

• How to do it for a neural network? — How to compute the error across multiple
layers?

‣ Assume we have some loss function that compute the difference between two
vectors: L(̂y − y)

‣ Goal = to derive gradient descent with the help of backpropagation!

Revisit the Perceptron Learning Rule
Error-based Learning as the secret sauce

• Remember the perceptron learning rule: w := w + η(y − ̂y)x

‣ Roughly: update each weight proportional to the error (i.e., the loss between
predicted and true label).̂y y

• How to do it for a neural network? — How to compute the error across multiple
layers?

‣ Assume we have some loss function that compute the difference between two
vectors: L(̂y − y)

‣ Goal = to derive gradient descent with the help of backpropagation!

Update each weight: , where w′￼ = w − η
d

dw
L(f(x; w), y) L(f(x; w), y) = L(̂y − y)

Computation Graphs
Representing the procedure of the computation

Computation Graphs
Representing the procedure of the computation

• For training, we need the derivative of the loss with respect to each weight
in every layer of the network;

• But the loss is computed only at the very end of the network….

• How do we know how much a weight at Layer contribute the final loss?1

Computation Graphs
Representing the procedure of the computation

• For training, we need the derivative of the loss with respect to each weight
in every layer of the network;

• But the loss is computed only at the very end of the network….

• How do we know how much a weight at Layer contribute the final loss?1

• Solution = represent the computation of the entire neural network with a (very
big) computation graph!

• A computation graph represents the entire process of computing a function
(which can be a very complex composition of multiple functions) —
representing the dependencies between any two steps of the computation.

Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation

• Say, here is a dummy loss function with 3 inputs:

• In a computation graph: a node represents a value, and an edge represents a

function / arithmetic operation / computation.

• Try to construct a computation graph for !

L(a, b, c) = c(a + 2b)

L

Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation

• Say, here is a dummy loss function with 3 inputs:

• In a computation graph: a node represents a value, and an edge represents a

function / arithmetic operation / computation.

• Try to construct a computation graph for !

L(a, b, c) = c(a + 2b)

L

a

c

b

Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation

• Say, here is a dummy loss function with 3 inputs:

• In a computation graph: a node represents a value, and an edge represents a

function / arithmetic operation / computation.

• Try to construct a computation graph for !

L(a, b, c) = c(a + 2b)

L

a

c

b d = 2b

Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation

• Say, here is a dummy loss function with 3 inputs:

• In a computation graph: a node represents a value, and an edge represents a

function / arithmetic operation / computation.

• Try to construct a computation graph for !

L(a, b, c) = c(a + 2b)

L

a

c

b d = 2b

e = a + d

Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation

• Say, here is a dummy loss function with 3 inputs:

• In a computation graph: a node represents a value, and an edge represents a

function / arithmetic operation / computation.

• Try to construct a computation graph for !

L(a, b, c) = c(a + 2b)

L

a

c

b d = 2b

e = a + d

L = ce

Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation

• . Now let L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2

a

c

b d = 2b

e = a + d

L = ce

Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation

• . Now let L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation

• . Now let L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2

a

c

b d = 2b

e = a + d

L = ce

Forward Pass

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

Computation Graphs
[Exercise] Try to construct a computation graph for a simple equation

• . Now let L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2

a

c

b d = 2b

e = a + d

L = ce

Forward Pass

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10
Remember: 
We want to know
how much does

 each
contribute to the
final loss

a, b, c

L

Backpropagation
Responsibility attribution through gradient

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• But we do know how much and contributes (since they are the final step)!

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

c e

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• But we do know how much and contributes (since they are the final step)!

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

c e

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• But we do know how much and contributes (since they are the final step)!

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

c e

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

L = ce

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• But we do know how much and contributes (since they are the final step)!

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

c e

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

L = ce

⇒
∂L
∂e

= c = − 2∂L
∂e

= − 2

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• But we do know how much and contributes (since they are the final step)!

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

c e

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

L = ce

⇒
∂L
∂e

= c = − 2

⇒
∂L
∂c

= e = 5

∂L
∂e

= − 2

∂L
∂c

= 5

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• We use ’s contribute to compute ’s contribution.

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

e d

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10∂L
∂e

= − 2

∂L
∂c

= 5

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• We use ’s contribute to compute ’s contribution.

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

e d

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

e = a + d

∂L
∂e

= − 2

∂L
∂c

= 5

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• We use ’s contribute to compute ’s contribution.

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

e d

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

e = a + d

⇒
∂e
∂d

= 1∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• We use ’s contribute to compute ’s contribution.

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

e d

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

e = a + d

⇒
∂e
∂d

= 1∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

f(x) = u(v(w(x)))
∂f
∂x

=
∂u
∂v

⋅
∂v
∂w

⋅
∂w
∂x

The Chain Rule

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• We use ’s contribute to compute ’s contribution.

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

e d

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

e = a + d

⇒
∂e
∂d

= 1

⇒
∂L
∂d

=
∂L
∂e

∂e
∂d

= 1 × −2
= − 2

∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

∂L
∂d

= − 2

f(x) = u(v(w(x)))
∂f
∂x

=
∂u
∂v

⋅
∂v
∂w

⋅
∂w
∂x

The Chain Rule

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• We continue to compute the contribution of and , respectively.

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

a b

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

e = a + d

⇒
∂e
∂a

= 1

⇒
∂L
∂a

=
∂L
∂e

∂e
∂a

= 1 × −2
= − 2

∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

∂L
∂d

= − 2

∂e
∂a

= 1∂L
∂a

= − 2

f(x) = u(v(w(x)))
∂f
∂x

=
∂u
∂v

⋅
∂v
∂w

⋅
∂w
∂x

The Chain Rule

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• We don’t know immediately how much contribute to …

• We continue to compute the contribution of and , respectively.

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2
a L

a b

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

d = 2b

⇒
∂d
∂b

= 2

⇒
∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 2 × 1 × 2
= − 4

∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

∂L
∂d

= − 2

∂e
∂a

= 1∂L
∂a

= − 2

∂d
∂b

= 2∂L
∂b

= − 4

f(x) = u(v(w(x)))
∂f
∂x

=
∂u
∂v

⋅
∂v
∂w

⋅
∂w
∂x

The Chain Rule

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• Derivative on an edge: local dependency;

• Derivative on node: long dependency all the way from the final node ()

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2

L

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

d = 2b

⇒
∂d
∂b

= 2

⇒
∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 2 × 1 × 2
= − 4

∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

∂L
∂d

= − 2

∂e
∂a

= 1∂L
∂a

= − 2

∂d
∂b

= 2∂L
∂b

= − 4

f(x) = u(v(w(x)))
∂f
∂x

=
∂u
∂v

⋅
∂v
∂w

⋅
∂w
∂x

The Chain Rule

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• Derivative on an edge: local dependency;

• Derivative on node: long dependency all the way from the final node ()

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2

L

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

d = 2b

⇒
∂d
∂b

= 2

⇒
∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 2 × 1 × 2
= − 4

∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

∂L
∂d

= − 2

∂e
∂a

= 1∂L
∂a

= − 2

∂d
∂b

= 2∂L
∂b

= − 4

f(x) = u(v(w(x)))
∂f
∂x

=
∂u
∂v

⋅
∂v
∂w

⋅
∂w
∂x

The Chain Rule

Edge: local

Backpropagation
Responsibility attribution through gradient
• . Now let ;

• Derivative on an edge: local dependency;

• Derivative on node: long dependency all the way from the final node ()

L(a, b, c) = c(a + 2b) a = 3, b = 1, c = − 2

L

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10

d = 2b

⇒
∂d
∂b

= 2

⇒
∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 2 × 1 × 2
= − 4

∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

∂L
∂d

= − 2

∂e
∂a

= 1∂L
∂a

= − 2

∂d
∂b

= 2∂L
∂b

= − 4

f(x) = u(v(w(x)))
∂f
∂x

=
∂u
∂v

⋅
∂v
∂w

⋅
∂w
∂x

The Chain Rule

Edge: local

Node: long

Backpropagation → Gradient Descent
Learning/Updating the weights to minimize loss

Update each weight: , where w′￼ = w − η
d

dw
L(f(x; w), y) L(f(x; w), y) = L(̂y − y)

a

c

b d = 2b

e = a + d

L = ce

a = 3

b = 1 d = 2

e = 5

c = − 2

L = − 10∂L
∂e

= − 2

∂L
∂c

= 5

∂e
∂d

= 1

∂L
∂d

= − 2

∂e
∂a

= 1∂L
∂a

= − 2

∂d
∂b

= 2∂L
∂b

= − 4

Backward Pass: Error Propagation

Gradient Descent in Neural Networks

The computation quickly blows up
Verify this when you are free!

For a simple two-layer  
neural network:

The computation quickly blows up
Verify this when you are free!

For a simple two-layer  
neural network:

One round of gradient descent:

The computation quickly blows up
Verify this when you are free!

For a simple two-layer  
neural network:

One round of gradient descent:

Notes on Loss Functions
Bonus on math
• If you wonder why perceptron learning uses while neural network uses to

update their weights….!

Perceptron: ; Neural Network:

• Short answer: they are actually the same thing! Here is a derivation:

✴ For loss function or :

✴ The gradient with respect to weight turns out to be:

✴ If we plug this into the gradient descent formula:

✴ The two minus signs cancels, giving the same direction as perception update.

+ −

w = w + η(y − ̂y)x w′￼ = w − η
d

dw
L(f(x; w), y)

L =
1
2

(y − ̂y)2 L = − [y log(̂y) + (1 − y)log(1 − ̂y)]
wi

∂L
∂wi

= − (y − ̂y) xi

w := w − η
∂L
∂w

= w − η (− (y − ̂y) x) = w + η(y − ̂y) x

Gradient Descent: Intuitions in 1D Space
Learning to minimize loss (as an optimization problem)

Parameter Value

Loss

🌟

Gradient Descent: Intuitions in 1D Space
Learning to minimize loss (as an optimization problem)

Parameter Value

Loss

Random
starting point

🌟

Gradient Descent: Intuitions in 1D Space
Learning to minimize loss (as an optimization problem)

Parameter Value

Loss

Random
starting point

1

🌟

Gradient Descent: Intuitions in 1D Space
Learning to minimize loss (as an optimization problem)

Parameter Value

Loss

Random
starting point

1

2

🌟

Gradient Descent: Intuitions in 1D Space
Learning to minimize loss (as an optimization problem)

Parameter Value

Loss

Random
starting point

1

2
3

🌟

Gradient Descent: Intuitions in 1D Space
Learning to minimize loss (as an optimization problem)

Parameter Value

Loss

Random
starting point

1

2
3

4 5 6

🌟

Gradient Descent: Intuitions in 1D Space
Learning to minimize loss (as an optimization problem)

Parameter Value

Loss

Random
starting point

1

2
3

4 5 6

We continue making
such jumps until we
reach a minimum,
where going in any

direction would
increase the loss

🌟

Gradient Descent: Intuitions in High Dimensions
Learning to minimize loss (as an optimization problem)

Interium Summary 4
Backpropagation and Gradient Descent

Interium Summary 4
Backpropagation and Gradient Descent

• Backpropagation (a method for efficiently computing the gradients) tells us
what the gradients are for each weight.

• Computing dependencies across layers through chain rule in computation
graphs;

Interium Summary 4
Backpropagation and Gradient Descent

• Backpropagation (a method for efficiently computing the gradients) tells us
what the gradients are for each weight.

• Computing dependencies across layers through chain rule in computation
graphs;

• Gradient descent (an optimization algorithm) tells us *how to update* the
weight.

• Iteratively optimizing to minimize the loss for each training example.

• A forward pass (generating prediction) followed by a backward pass
(computing the gradient and updating the weights).

Development of Neural Network
Architectures
1990s - present

Recurrent Neural Network (RNN)
Introducing the notion of Time

Recurrent Neural Network (RNN)
Introducing the notion of Time

• Motivation: Standard feed-forward networks couldn’t handle sequential or time-
dependent data, since they treat all inputs as independent.

Recurrent Neural Network (RNN)
Introducing the notion of Time

• Motivation: Standard feed-forward networks couldn’t handle sequential or time-
dependent data, since they treat all inputs as independent.

• Usefulness: RNNs introduce recurrent connections that let information persist
across time steps, enabling modeling of language, speech, and temporal patterns.

Long Short-Term Memory (LSTM)
Handling long-distance dependencies through managing memory

Long Short-Term Memory (LSTM)
Handling long-distance dependencies through managing memory

• Motivation: Vanilla RNNs struggled with
long-term dependencies because of
vanishing/exploding gradients during
training.

Long Short-Term Memory (LSTM)
Handling long-distance dependencies through managing memory

• Motivation: Vanilla RNNs struggled with
long-term dependencies because of
vanishing/exploding gradients during
training.

• Usefulness: LSTMs use gated cells to
selectively remember or forget information,
allowing stable learning over long
sequences—powering early
breakthroughs in speech recognition,
translation, and text generation.

Transformers
Global information access

Transformers
Global information access

• Motivation: Even LSTMs process
sequences step-by-step, limiting
parallelization and global context
access.

Transformers
Global information access

• Motivation: Even LSTMs process
sequences step-by-step, limiting
parallelization and global context
access.

• Usefulness: Transformers replace
recurrence with self-attention,
letting the model directly relate
every token to every other—
making large-scale training efficient
and forming the foundation of
modern large language models.

Next Time (after fall break):
Tom McCoy presenting on LLMs

Thank you for listening!

And their slides are adpated from Jurafsky and Martin: https://web.stanford.edu/~jurafsky/slp3/

Slides are partially adapted from
Bob Frank (left) and Tom McCoy (right)

https://web.stanford.edu/~jurafsky/slp3/

