Looking into your mind through *Priming* LING 348 / 748 Computational Psycholinguistics

Zhenghao Herbert Zhou, Apr 16th 2025

us - Guardian

Deep sea creatures 'will not escape climate change'

Climate models predict 'staggering' impact on deep sea marine life as world warms, reports **Climate News Network**

Pale octopus found in the Southern Ocean Photograph: Oxford University/PA Photograph: Oxford University/PA

Please read the following words as quickly as you can.

mint

tin

pint III

Please name a word that fits into the blanks.

E U I

0 <u>t</u> <u>p</u> <u>c</u>

S _ D _ me

What have we learned...?

early 16th century (in the sense 'fill, load'): origin uncertain; probably based on Latin *primus* 'first', since the sense expressed is a 'first' operation prior to something else.

Use over time for: priming

\equiv **Collins**

5. transitive verb

If you prime someone to do something, you prepare them to do it, for example, by giving them information about it beforehand.

Claire wished she'd primed Sarah beforehand. 🛃 Marianne had not known until Arnold primed her for her duties that she was to be the sole female.

Synonyms: inform, tell, train, coach More Synonyms of **prime**

6. transitive verb

If someone primes a bomb or a gun, they prepare it so that it is ready to explode or fire.

He was priming the bomb to go off in an hour's time. He kept a primed shotgun in his office. 🛃

Synonyms: prepare, set up, load, equip More Synonyms of **prime**

\equiv **Collins**

5. transitive verb

If you prime someone to do something, you prepare them to do it, for example, by giving them information about it beforehand.

Claire wished she'd primed Sarah beforehand. 🛃 Marianne had not known until Arnold primed her for her duties that she was to be the sole female.

Synonyms: inform, tell, train, coach More Synonyms of **prime**

6. transitive verb

If someone primes a bomb or a gun, they prepare it so that it is ready to explode or fire.

He was priming the bomb to go off in an hour's time. He kept a primed shotgun in his office. 🛃

Synonyms: prepare, set up, load, equip More Synonyms of **prime**

later processing of the same or a similar stimulus.

Priming (cognitive psychology): recent experience of a stimuli facilitates or inhibits

Parts of psycholinguistics

Parts of psycholinguistics

Parts of psycholinguistics

- Types of Priming:
 - Semantic Priming
 - Subliminal Priming
 - Syntactic Priming

Parts of psycholinguistics

This course focuses on learning and comprehension But today I'll say just a tiny bit about production!

- Semantic Priming
- Subliminal Priming

• Priming Language Models?

Parts of psycholinguistics

- Types of Priming:
 - Semantic Priming
 - Subliminal Priming
 - Syntactic Priming
- Priming Language Models?
- To what extent is Priming a type of Learning?

Quick Recap When we were talking about word recognition....

"Pick up the beaker"

- Speaker;
- Beaker;
- Beetle;
- Carriage;

Quick Recap When we were talking about word recognition....

"Pick up the beaker"

- Speaker;
- Beaker;
- Beetle;
- Carriage;

Quick Recap When we were talking about word recognition....

"Pick up the beaker"

- Speaker;
- Beaker;
- Beetle;
- Carriage;

Parallel activations of multiple lexical items!

recognize in subsequent encounters.

• Semantic Priming: hearing or reading a word partially activates other words that are related in meaning to that word, making the related words easier to

recognize in subsequent encounters.

Semantic

• Semantic Priming: hearing or reading a word partially activates other words that are related in meaning to that word, making the related words easier to

- recognize in subsequent encounters.
- **Related**: phonological priming, orthographical priming, etc.

Semantic

• Semantic Priming: hearing or reading a word partially activates other words that are related in meaning to that word, making the related words easier to
Semantic Priming We have a highly interconnected Lexicon

- recognize in subsequent encounters.
- **Related**: phonological priming, orthographical priming, etc.

Semantic

• Semantic Priming: hearing or reading a word partially activates other words that are related in meaning to that word, making the related words easier to

Phonological

Semantic Priming We have a highly interconnected Lexicon

- recognize in subsequent encounters.
- **Related**: phonological priming, orthographical priming, etc.

Semantic

• Semantic Priming: hearing or reading a word partially activates other words that are related in meaning to that word, making the related words easier to

Phonological

Orthographical

Semantic Priming Evidence from Myung et al. (2006)

Unrelated

Unrelated

Playing on the typewriter, typing on the piano: manipulation knowledge of objects

Jong-yoon Myung^{*}, Sheila E. Blumstein, Julie C. Sedivy

Department of Cognitive and Linguistic Sciences, Box 1978, Brown University, Providence, RI 02912, USA

Received 25 August 2004; accepted 19 November 2004

Semantic Priming **Evidence from Myung et al. (2006)**

Unrelated

Unrelated

"Click on the Hammer"

Playing on the typewriter, typing on the piano: manipulation knowledge of objects

Jong-yoon Myung^{*}, Sheila E. Blumstein, Julie C. Sedivy

Department of Cognitive and Linguistic Sciences, Box 1978, Brown University, Providence, RI 02912, USA

Received 25 August 2004; accepted 19 November 2004

Semantic Priming Evidence from Myung et al. (2006)

Unrelated

Unrelated

"Click on the Hammer"

Playing on the typewriter, typing on the piano: manipulation knowledge of objects

Jong-yoon Myung^{*}, Sheila E. Blumstein, Julie C. Sedivy

Department of Cognitive and Linguistic Sciences, Box 1978, Brown University, Providence, RI 02912, USA

Received 25 August 2004; accepted 19 November 2004

word, another Botton if they think this is a nonce word;

Lexical Decision Task: participants read strings of letters on a screen that are either actual words (e.g. doctor) or nonce words (e.g. domter). Participants press a button if they think this is a real

- word, another Botton if they think this is a nonce word;
- Lower response time \rightarrow Easier / faster to recognize \rightarrow (inferencing) More activation;

Lexical Decision Task: participants read strings of letters on a screen that are either actual words (e.g. doctor) or nonce words (e.g. domter). Participants press a button if they think this is a real

- word, another Botton if they think this is a nonce word;
- Lower response time \rightarrow Easier / faster to recognize \rightarrow (inferencing) More activation;
- Prime the participants with a semantically {related, unrelated} word before the target lexical decision.
 - IF [faster to respond for the related prime]
 - THEN [spreading activation from prime to target] semantic priming!

Lexical Decision Task: participants read strings of letters on a screen that are either actual words (e.g. *doctor*) or nonce words (e.g. *domter*). Participants press a button if they think this is a real

- word, another Botton if they think this is a nonce word;
- Lower response time \rightarrow Easier / faster to recognize \rightarrow (inferencing) More activation;
- Prime the participants with a semantically {related, unrelated} word before the target lexical decision.
 - IF [faster to respond for the related prime]
 - THEN [spreading activation from prime to target] semantic priming!

Lexical Decision Task: participants read strings of letters on a screen that are either actual words (e.g. doctor) or nonce words (e.g. domter). Participants press a button if they think this is a real

VS.

Related

WRENCH—HAMMER HANDLE—DOOR

NURSE—DOCTOR

FLOWER—VASE

Unrelated

WRENCH—BOOK HANDLE—SHOES NURSE—DOCTOR FLOWER—SCREEN

Lexical Access during Sentence Comprehension: (Re)Consideration of Context Effects

JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 18, 645-659 (1979)

DAVID A. SWINNEY

Tufts University

 Cross-Modal Lexical Priming: doi auditory stimuli.

Lexical Access during Sentence Comprehension: (Re)Consideration of Context Effects

JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 18, 645-659 (1979)

DAVID A. SWINNEY

Tufts University

Cross-Modal Lexical Priming: doing lexical decision task while primed by

- auditory stimuli.
- in the mind, even when the word appears in a context with strong disambiguation information?

Lexical Access during Sentence Comprehension: (Re)Consideration of Context Effects

JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 18, 645-659 (1979)

DAVID A. SWINNEY Tufts University

Cross-Modal Lexical Priming: doing lexical decision task while primed by

• **Research Question**: are multiple meanings of an ambiguous word activated

- auditory stimuli.
- in the mind, even when the word appears in a context with strong disambiguation information?

Lexical Access during Sentence Comprehension: (Re)Consideration of Context Effects

JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 18, 645-659 (1979)

DAVID A. SWINNEY Tufts University

Cross-Modal Lexical Priming: doing lexical decision task while primed by

• **Research Question**: are multiple meanings of an ambiguous word activated

Hypothesis: if both meanings are activated, participants will response faster to semantically-related words for both meanings in the lexical decision task.

- auditory stimuli.
- in the mind, even when the word appears in a context with strong disambiguation information?
- BUG

Lexical Access during Sentence Comprehension: (Re)Consideration of Context Effects

JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 18, 645-659 (1979)

DAVID A. SWINNEY Tufts University

Cross-Modal Lexical Priming: doing lexical decision task while primed by

• **Research Question**: are multiple meanings of an ambiguous word activated

Hypothesis: if both meanings are activated, participants will response faster to semantically-related words for both meanings in the lexical decision task.

roaches, and other **bugs (prime)** I in the corner I of his room.

"The man was not surprised when he found several spiders, roaches, and other bugs..."

> VISUAL TARGETS presented either immediately after the prime (bugs/insects) or several syllables downstream ANT (related to the intended meaning of the ambiguous prime) SPY (related to the alternative, unintended meaning) SEW (unrelated)

Lexical Access during Sentence Comprehension: (Re)Consideration of Context Effects

JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 18, 645-659 (1979)

DAVID A. SWINNEY Tufts University

• "Rumor has it that for many years, the government building has been plagued with problems. The man was not surprised when he found several spiders,

roaches, and other **bugs (prime)** I in the corner I of his room.

"The man was not surprised when he found several spiders, roaches, and other bugs ... '

> SPY (related to the alternative, unintended meaning) SEW (unrelated)

Lexical Access during Sentence Comprehension: (Re)Consideration of Context Effects

JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 18, 645-659 (1979)

DAVID A. SWINNEY Tufts University

• "Rumor has it that for many years, the government building has been plagued with problems. The man was not surprised when he found several spiders,

roaches, and other **bugs (prime)** I in the corner I of his room.

Lexical Access during Sentence Comprehension: (Re)Consideration of Context Effects

JOURNAL OF VERBAL LEARNING AND VERBAL BEHAVIOR 18, 645-659 (1979)

DAVID A. SWINNEY Tufts University

• "Rumor has it that for many years, the government building has been plagued with problems. The man was not surprised when he found several spiders,

Semantic Priming Another Version....

Semantic Priming Another Version....

Nurse

Semantic Priming **A Subliminal Version**

Replay it 20 times slower...

Semantic Priming A Subliminal Version

Replay it 20 times slower...

Nurse

Subliminal Priming From *Fight Club* (1999)

Subliminal Priming From *Fight Club* (1999)

Subliminal Priming From *Fight Club* (1999)

How to Prune a Garden Path by Nipping It in the Bud: Fast Priming of Verb Argument Structure

John C. Trueswell and Albert E. Kim

syntactic frame in a way that can bias the interpretation of a syntactic ambiguity?

How to Prune a Garden Path by Nipping It in the Bud: Fast Priming of Verb Argument Structure

John C. Trueswell and Albert E. Kim

University of Pennsylvania

Research Question: does reading a verb immediately activate its associated

- syntactic frame in a way that can bias the interpretation of a syntactic ambiguity?

How to Prune a Garden Path by Nipping It in the Bud: Fast Priming of Verb Argument Structure

John C. Trueswell and Albert E. Kim

University of Pennsylvania

Research Question: does reading a verb immediately activate its associated

Hypothesis: subliminal priming of a verb biasing towards one syntactic frame \rightarrow continuations consistent with the preferred frame will be read faster.

- syntactic frame in a way that can bias the interpretation of a syntactic ambiguity?
- Two syntactic frames: sentential complement vs. direct object.
 - camper.
 - could not have been prevented.

How to Prune a Garden Path by Nipping It in the Bud: Fast Priming of Verb Argument Structure

John C. Trueswell and Albert E. Kim

University of Pennsylvania

Research Question: does reading a verb immediately activate its associated

• Hypothesis: subliminal priming of a verb biasing towards one syntactic frame \rightarrow continuations consistent with the preferred frame will be read faster.

Direct Object: The talented photographer accepted the <u>fire</u> | from his fellow

Sentential Complement: The talented photographer accepted the <u>fire</u>

How to Prune a Garden Path by Nipping It in the Bud: Fast Priming of Verb Argument Structure

John C. Trueswell and Albert E. Kim

- Two syntactic frames: sentential complement vs. direct object.
 - Direct Object: prime verb = obtained;
 - Sentential Complement: prime verb = realized;

How to Prune a Garden Path by Nipping It in the Bud: Fast Priming of Verb Argument Structure

John C. Trueswell and Albert E. Kim

- Two syntactic frames: sentential complement vs. direct object.
 - Direct Object: prime verb = obtained;
 - Sentential Complement: prime verb = realized;
- Test on garden path with sentential complement;

How to Prune a Garden Path by Nipping It in the Bud: Fast Priming of Verb Argument Structure

John C. Trueswell and Albert E. Kim

- Two syntactic frames: sentential complement vs. direct object.
 - Direct Object: prime verb = obtained;
 - Sentential Complement: prime verb = realized;
- Test on garden path with sentential complement;
- Result = primed by realized reduces the garden path effect — garden path structure can be primed!

Syntactic / Structural Priming

Syntactic Priming Can abstract structural representations be primed?

Syntactic Priming **Can abstract structural representations be primed?**

recently encountered during production.

• Structural Priming: speakers tend to reuse the syntactic structure they have
- recently encountered during production.
- Common Structural Alternations subject to priming:

- recently encountered during production.
- Common Structural Alternations subject to priming:
 - Dative Alternation:

- recently encountered during production.
- Common Structural Alternations subject to priming:
 - Dative Alternation:
 - Double Object (DO): Alice sent Bob a letter.

- recently encountered during production.
- Common Structural Alternations subject to priming:
 - Dative Alternation:
 - Double Object (DO): Alice sent Bob a letter.
 - Prepositional Dative (PD): Alice sent a letter to Bob.

- recently encountered during production.
- Common Structural Alternations subject to priming:
 - Dative Alternation:
 - Double Object (DO): Alice sent Bob a letter.
 - Prepositional Dative (PD): Alice sent a letter to Bob.
 - Active vs. Passive;

- recently encountered during production.
- Common Structural Alternations subject to priming:
 - Dative Alternation:
 - Double Object (DO): Alice sent Bob a letter.
 - Prepositional Dative (PD): Alice sent a letter to Bob.
 - Active vs. Passive;
 - Possessive: Of- and S- Genitives;

Production task with Preamble Completion Paradigm

Prime

Production task with Preamble Completion Paradigm

Prime Picture + Preamble

Production task with Preamble Completion Paradigm

heads the primed structures is repeated between prime and target.

- heads the primed structures is repeated between prime and target.
 - * Content word, in contrast, doesn't have such a boost.

- heads the primed structures is repeated between prime and target.
 - * Content word, in contrast, doesn't have such a boost.

Carl <u>gave</u> Danis a letter.

- heads the primed structures is repeated between prime and target.
 - * Content word, in contrast, doesn't have such a boost.
 - Carl <u>gave</u> Danis a letter.
 - Carl showed Danis a letter.

- heads the primed structures is repeated between prime and target.
 - * Content word, in contrast, doesn't have such a boost.
 - Carl <u>gave</u> Danis a letter.
 - Carl showed Danis a letter.

- heads the primed structures is repeated between prime and target.
 - * Content word, in contrast, doesn't have such a boost.

Carl gave Danis a letter.

Carl showed Danis a letter.

Alice gave Bob a book

alternative.

 Inverse Frequency Effect: the less preferred (lower frequency) syntactic structure causes a stronger priming effect than the more preferred (higher frequency) structural

- alternative.
- Verb Bias: structural preference for ditransitive predicates;
 - Buy is biased towards DO, Design towards PD

 Inverse Frequency Effect: the less preferred (lower frequency) syntactic structure causes a stronger priming effect than the more preferred (higher frequency) structural

- alternative.
- Verb Bias: structural preference for ditransitive predicates;
 - Buy is biased towards DO, Design towards PD

DO Prime

A doctor bought a chief a plate. A doctor designed a chief a plate.

 Inverse Frequency Effect: the less preferred (lower frequency) syntactic structure causes a stronger priming effect than the more preferred (higher frequency) structural

PD Target

The secretary drew the card for the band.

- alternative.
- Verb Bias: structural preference for ditransitive predicates;
 - Buy is biased towards DO, Design towards PD

DO Prime

A doctor bought a chief a plate.

A doctor designed a chief a plate.

 Inverse Frequency Effect: the less preferred (lower frequency) syntactic structure causes a stronger priming effect than the more preferred (higher frequency) structural

PD Target

The secretary drew the card for the band.

Greater priming effect!

The Representation of Verbs: Evidence from Syntactic Priming in Language Production

Martin J. Pickering and Holly P. Branigan

Human Communication Research Centre, Department of Psychology, University of Glasgow, Glasgow, Scotland

The Representation of Verbs: Evidence from Syntactic Priming in Language Production

Martin J. Pickering and Holly P. Branigan

Human Communication Research Centre, Department of Psychology, University of Glasgow, Glasgow, Scotland

 Transient Activation account: priming is increasing the short-term activation of the primed structure, which leads to a greater chance to be reactivated

The Representation of Verbs: Evidence from Syntactic Priming in Language Production

Martin J. Pickering and Holly P. Branigan

Human Communication Research Centre, Department of Psychology, University of Glasgow, Glasgow, Scotland

 Transient Activation account: priming is increasing the short-term activation of the primed structure, which leads to a greater chance to be reactivated

Structural nodes

Lexical nodes

The Representation of Verbs: Evidence from Syntactic Priming in Language Production

Martin J. Pickering and Holly P. Branigan

Human Communication Research Centre, Department of Psychology, University of Glasgow, Glasgow, Scotland

 Transient Activation account: priming is increasing the short-term activation of the primed structure, which leads to a greater chance to be reactivated

Structural nodes

Lexical nodes

The Representation of Verbs: Evidence from Syntactic Priming in Language Production

Martin J. Pickering and Holly P. Branigan

Human Communication Research Centre, Department of Psychology, University of Glasgow, Glasgow, Scotland

 Transient Activation account: priming is increasing the short-term activation of the primed structure, which leads to a greater chance to be reactivated

Structural nodes

Lexical Boost

Implicit Learning **Chang & Bock (2006)**

Implicit Learning: priming is an error-driven, long term updates to the connection weights — amount of updates proportional to surprisal.

Becoming Syntactic

Franklin Chang Max Planck Institute for Evolutionary Anthropology

Gary S. Dell and Kathryn Bock University of Illinois at Urbana–Champaign

Structural nodes

Lexical nodes

Implicit Learning **Chang & Bock (2006)**

Implicit Learning: priming is an error-driven, long term updates to the connection weights — amount of updates proportional to surprisal.

Becoming Syntactic

Franklin Chang Max Planck Institute for Evolutionary Anthropology

Gary S. Dell and Kathryn Bock University of Illinois at Urbana–Champaign

Structural nodes

Lexical nodes

Implicit Learning **Chang & Bock (2006)**

Implicit Learning: priming is an error-driven, long term updates to the connection weights — amount of updates proportional to surprisal.

Becoming Syntactic

Franklin Chang Max Planck Institute for Evolutionary Anthropology

Plural

Gary S. Dell and Kathryn Bock University of Illinois at Urbana–Champaign

Structural nodes

Lexical Boost

Inverse Frequency

What about Language Models?

Why are we curious about whether LMs show priming?

Why are we curious about whether LMs show priming?

- [Alignment Evaluation] LMs as psycholinguistic subjects?

 - Do LMs pattern with humans?

What factors influence the strength of structural priming in LMs?

Why are we curious about whether LMs show priming?

- [Alignment Evaluation] LMs as psycholinguistic subjects?

 - Do LMs pattern with humans?
- - If so, how do they affect LMs' generation process?

• What factors influence the strength of structural priming in LMs?

[Interpretability] Do LMs learn abstract syntactic representation?

Why are we curious about whether LMs show priming?

- [Alignment Evaluation] LMs as psycholinguistic subjects? • What factors influence the strength of structural priming in LMs?

 - Do LMs pattern with humans?
- [Interpretability] Do LMs learn abstract syntactic representation?
 - If so, how do they affect LMs' generation process?
- [Inferring Internal Mechanisms] How those structural representations inform us about the learning mechanisms in LMs?

How to simulate priming in neural LMs? Van Schijndel & Linzen (2018)

Marten van Schijndel

Department of Cognitive Science Johns Hopkins University vansky@jhu.edu

A Neural Model of Adaptation in Reading

Tal Linzen

Department of Cognitive Science Johns Hopkins University tal.linzen@jhu.edu
How to simulate priming in neural LMs? Van Schijndel & Linzen (2018)

A Neural Model of Adaptation in Reading

Marten van Schijndel

Department of Cognitive Science Department of Cognitive Science Johns Hopkins University Johns Hopkins University vansky@jhu.edu tal.linzen@jhu.edu

- **Method** = *fine-tuning* on a small number of prime sentences!
 - Learning rate = 20 (wow!) \bullet

Tal Linzen

How to simulate priming in neural LMs? Van Schijndel & Linzen (2018)

A Neural Model of Adaptation in Reading

Marten van Schijndel

Department of Cognitive Science Johns Hopkins University vansky@jhu.edu

- **Method** = *fine-tuning* on a small number of prime sentences!
 - Learning rate = 20 (wow!)
- **Model** = LSTM (trained on <u>Wikipedia</u> with 100M tokens, this is 2018);

Tal Linzen Department of Cognitive Science Johns Hopkins University tal.linzen@jhu.edu

How to simulate priming in neural LMs? Van Schijndel & Linzen (2018)

A Neural Model of Adaptation in Reading

Marten van Schijndel

Department of Cognitive Science Johns Hopkins University vansky@jhu.edu

- **Method** = *fine-tuning* on a small number of prime sentences!
 - Learning rate = 20 (wow!)
- **Model** = LSTM (trained on <u>Wikipedia</u> with 100M tokens, this is 2018);
- Metric = surprisal: higher surprisal \rightarrow longer reading time;

Tal Linzen Department of Cognitive Science Johns Hopkins University tal.linzen@jhu.edu

Do adapted models match human data better than non-adapted ones?

Van Schijndel & Linzen (2018), cont.

- Test Dataset = Natural Stories Corpus (Futrell et al. 2018)
- Method = run a fixed effect regression (a generalized linear regression) using surprisals to fit human self-paced reading time data.

Do adapted models match human data better than non-adapted ones?

Van Schijndel & Linzen (2018), cont.

- Test Dataset = Natural Stories Corpus (Futrell et al. 2018)
- Method = run a fixed effect regression (a generalized linear regression) using surprisals to fit human self-paced reading time data.
- Result = the adapted model subsur the prediction of the non-adapted o
 - $|t| > 2 \rightarrow significant$
 - When adapted, the adaptive surp but not the non-adaptive surprisa significant predictor.

mes		\hat{eta}	$\hat{\sigma}$	t	
ne'	WITHOUT ADAPTIVE SURPRISAL:				
,	Sentence position	0.55	0.53	1.03	
	Word length	7.29	1.00	7.26	
	Non-adaptive surprisal	6.64	0.68	9.79	
	WITH ADAPTIVE SURPRISAL:				
orisal, al, is a	Sentence position	0.29	0.53	0.55	
	Word length	6.42	1.00	6.40	
	Non-adaptive surprisal	-0.89	0.68	-1.31	
	Adaptive surprisal	8.45	0.63	13.42	

Do adapted models match human data? Van Schijndel & Linzen (2018), cont.

Do adapted models match human data? Van Schijndel & Linzen (2018), cont.

- Garden Path Minimal Pair: compare surprisal / reading time on disambiguations:
 - the midnight raid.
 - <u>conducted the midnight raid.</u>

• Ambiguous: The experience solder warned about the dangers <u>conducted</u>

• Unambiguous: The experience solder who were warned about the dangers

Do adapted models match human data? Van Schijndel & Linzen (2018), cont.

- Garden Path Minimal Pair: compare surprisal / reading time on disambiguations:
 - the midnight raid.
 - conducted the midnight raid.
- **Compute**:

ambiguous) - MeanSurprisal (underline | unambiguous) MeanSurprisal (underline

• Ambiguous: The experience solder warned about the dangers <u>conducted</u>

• **Unambiguous**: The experience solder who were warned about the dangers

- **Result** = aligning with human pattern!
 - Initially large adaptation effect, followed by more gradual adaptation.

• **Dative Alternation:** adapted to 100 DO sentence, and measure the perplexity on {100 other DO sentences, 100 PD counterpart};

- **Dative Alternation:** adapted to 100 DO sentence, and measure the perplexity on {100 other DO sentences, 100 PD counterpart};
- Result

- **Dative Alternation:** adapted to 100 DO sentence, and measure the perplexity on {100 other DO sentences, 100 PD counterpart};
- Result
 - Compare to the first bar: more decrease \rightarrow larger adaptation;

- **Dative Alternation:** adapted to 100 DO sentence, and measure the perplexity on {100 other DO sentences, 100 PD counterpart};
- Result
 - Compare to the first bar: more decrease \rightarrow larger adaptation;

- **Dative Alternation:** adapted to 100 DO sentence, and measure the perplexity on {100 other DO sentences, 100 PD counterpart};
- Result
 - Compare to the first bar: more decrease \rightarrow larger adaptation;
 - Sharing vocab reduces perplexity more than sharing syntax!

- **Dative Alternation:** adapted to 100 DO sentence, and measure the perplexity on {100 other DO sentences, 100 PD counterpart};
- Result
 - Compare to the first bar: more decrease \rightarrow larger adaptation;
 - Sharing vocab reduces perplexity more than sharing syntax!
 - Optimal learning rate = 2;

How to quantify similarity across syntactic structures? Prasad et al. (2019)

Using Priming to Uncover the Organization of Syntactic Representations in Neural Language Models

Grusha Prasad Marten van Schijndel Johns Hopkins University grusha.prasad@jhu.edu mv443@cornell.edu

- **Method** = same as before *fine-tuning* on LSTM;
- similarity between the models' representations of those structures;

Tal Linzen Cornell University Johns Hopkins University tal.linzen@jhu.edu

• Underlying Logic = the degree to which one structure primes another \rightarrow the

How to quantify similarity across syntactic structures? Prasad et al. (2019)

$$\mathbb{D}(S_X, \neg S_X) = \frac{AE(X_2 \mid X_1)}{AE(\neg X_2 \mid X_1)}$$

- D > 1 → within-class similarity is greater than inter-class similarity;
- $AE(X_2 | X_1)$ = adaptation effect on X_2 when primed by X_1 ;

Unreduced Object RC Reduced Object RC

Unreduced Passive RC

Reduced Passive RC

Subject RC

Coordination Subject matched Coordination Object matched

How to quantify similarity across syntactic structures? Prasad et al. (2019)

$$\mathbb{D}(S_X, \neg S_X) = \frac{AE(X_2 \mid X_1)}{AE(\neg X_2 \mid X_1)}$$

- D > 1 → within-class similarity is greater than inter-class similarity;
- $AE(X_2 | X_1)$ = adaptation effect on X_2 when primed by X_1 ;

Unreduced Object RC

- Lower level abstraction: same type of relative clauses;
- Intermediate abstraction: RC classes {match, mismatch} w.r.t. reduction;
- Highest abstraction: classes {with, without} RC;

How to quantify similarity across syntactic structures? Prasad et al. (2019) RC Coordination

$$\mathbb{D}(S_X, \neg S_X) = \frac{AE(X_2 \mid X_1)}{AE(\neg X_2 \mid X_1)}$$

- $\mathbb{D} > 1 \rightarrow$ within-class similarity is greater than inter-class similarity;
- $AE(X_2 | X_1)$ = adaptation effect on X_2 when primed by X_1 ;

- Lower level abstraction: same type of relative clauses;
- Intermediate abstraction: RC classes {match, mismatch} w.r.t. reduction;
- **Highest abstraction**: classes {with, without} RC;

Interim Summary Fine-tuning as a method of priming

- Fine-tuning on prime sentences with LSTMs is a way of simulating priming!
 - It better simulates human reading time data.
- Mixed finding on keeping track of the abstract syntactic representations;
 - Lexical items does play a role;
- Can use priming to uncover internal organizations of structures.

Can you think of other ways of doing priming in LMs?

Concatenation as another way of priming! Sinclair et al. (2022)

Arabella Sinclair^{1,2*} **Jaap Jumelet**^{2*} Willem Zuidema² Raquel Fernández²

¹School of Natural and Computing Sciences ²Institute for Logic, Language and Computation University of Aberdeen, United Kingdom University of Amsterdam, The Netherlands arabella.sinclair@abdn.ac.uk {j.w.d.jumelet|zuidema|raquel.fernandez}@uva.nl

prime sentence is now the *context* of the target sentence.

Structural Persistence in Language Models: Priming as a Window into Abstract Language Representations

Concatenation: concatenate the prime and target sentences directly — the

Concatenation as another way of priming! Sinclair et al. (2022)

Arabella Sinclair^{1,2*} **Jaap Jumelet**^{2*} Willem Zuidema² Raquel Fernández²

¹School of Natural and Computing Sciences ²Institute for Logic, Language and Computation University of Aberdeen, United Kingdom University of Amsterdam, The Netherlands arabella.sinclair@abdn.ac.uk {j.w.d.jumelet|zuidema|raquel.fernandez}@uva.nl

prime sentence is now the *context* of the target sentence.

$$PE_{\text{PO}} = {}_{\log}P(T_{\text{PO}}|P_{\text{PO}}) - {}_{\log}P(T_{\text{PO}}|P_{\text{PO}})$$
$$PE_{\text{DO}} = {}_{\log}P(T_{\text{DO}}|P_{\text{DO}}) - {}_{\log}P(T_{\text{DO}}|P_{\text{DO}})$$

Structural Persistence in Language Models: Priming as a Window into Abstract Language Representations

Concatenation: concatenate the prime and target sentences directly — the

 $|P_{\scriptscriptstyle \mathrm{PO}})$

Concatenation as another way of priming! Sinclair et al. (2022)

Arabella Sinclair^{1,2*} Jaap Jumelet^{2*} Willem Zuidema² Raquel Fernández²

¹School of Natural and Computing Sciences ²Institute for Logic, Language and Computation University of Aberdeen, United Kingdom University of Amsterdam, The Netherlands arabella.sinclair@abdn.ac.uk {j.w.d.jumelet|zuidema|raquel.fernandez}@uva.nl

prime sentence is now the *context* of the target sentence.

$$PE_{\text{PO}} = {}_{\log}P(T_{\text{PO}}|P_{\text{PO}}) - {}_{\log}P(T_{\text{PO}}|P_{\text{PO}})$$
$$PE_{\text{DO}} = {}_{\log}P(T_{\text{DO}}|P_{\text{DO}}) - {}_{\log}P(T_{\text{DO}}|P_{\text{DO}})$$

Structural Persistence in Language Models: Priming as a Window into Abstract Language Representations

Concatenation: concatenate the prime and target sentences directly — the

 $|P_{PO}\rangle$

Priming Effect (Eq. 1) Prasad et al. (2019)

- card for the boss.
- **Model:** the GPT2 family and variants (we are finally in the modern realm!)

• **Example Input:** A professor promised a student a letter. The secretary drew the

- Results:
 - Asymmetric priming effect:
 - ► PE(DO) > PE(PD)
 - PE(passive) > PE(active)
 - Increasing model size doesn't always increase priming effect.

Semantics similarity?

- Cosine similarity from word embeddings;
- Human free association data;

Corpus	Condition	Prime (ACT)	Т
Semantic Similarity	Verb Only All Nouns All Words	The chief struck the mayor. An actor broke a glass . The student drank the wine .	A bishop wa The bottle v A beer was

Superimposing semantic priming with syntactic priming!

Lexical overlap?

Corpus	Condition	Prime (ACT)	Т
Levical	Random Noun Main Verb	The girl smelled the chicken .	A chicke The iron
Overlap	Function Words All Nouns	The soldier wanted the pie. The king smelled the wine.	The tron The boo A wine v

Testing the lexical boost effect!

- Verbs (argument head) and function words have larger effect than content word confirming the LBE.
- Syntactic priming modulates semantic priming!

B. Lexical Overlap (§7.1.2)

Target (PASS)

en was prepared by a pilot. was **used** by the father. ok was carried by **the** manager. was drunk by a **king**.

Semantic plausibility?

Corpus	Condition	Prime (ACT)	Ta
Implausible Prime		The newspaper grabbed the pot .	A key i.

- Is structural information autonomous from semantics?
 - Asymmetry persists; negative priming!
 - Structural encoding is not fully independent from semantics;

'arget (PASS)

is removed by an attorney.

- Strength of Exposure?
 - **Recency:** more recent, stronger PE
 - **Cumulativity:** more priming sentences, stronger PE
- Indeed what we expect!
 - Few-shot / In-context learning? - will come back to it....

Structural Complexity?

Sequential abstract structures: e.g. a sequence of part-of-speeches?

OR Hierarchical syntactic representation? \bullet

Corpus	Condition	Prime (ACT)	Ta
Structural Complexity	Prime Complex Target Complex Both Complex	A lady with a red bag chased a minister. The physician judged the leader. The bad adult with the hat raised the knife.	The juice was A rich school A son was hel

- **Priming effect is a bit lower than Core;** \bullet
- Some priming effect might be due to simple sequential structures, but some degree of hierarchical structures must also be encoded.

arget (PASS)

purchased by the child. was embraced by a business. lped by an author **from Cuba**.

Interim Summary Concatenation as another method of priming

- Modern LLMs are susceptible to structural \bullet priming under the concatenation mode!
- A lot of factors modulates structural priming strength:
 - Semantic similarity & plausibility, lexical overlap;
 - Recency and cumulativity;
 - Structural complexity;
- Structural information is indeed encoded, though not fully autonomous from semantics;

How abstract structures are? **Crosslingual Structural Priming!**

Is the same structural representations shared across languages? Michaelov et al. (2023)

Structural Priming Demonstrates Abstract Grammatical Representations in Multilingual Language Models

James A. Micl	haelov ^a * C	atherine A	ľ
		^a Departme	er
		^b Depar	t
		University	′ (
	<pre>{j1michae;</pre>	, ccarnet	t

- Using **concatenate** mode for priming;
- German, Greek, Polish, Mandarin;
- Model = XGLM 4.5B (Lin et al. 2022) pretrained on 134 languages!

rnett^b* Tyler A. Chang^a Benjamin K. Bergen^a nt of Cognitive Science, tment of Linguistics, of California San Diego , tachang, bkbergen}@ucsd.edu

Using the same data from 6 human experiments in English, Dutch, Spanish,

Is the same structural representations shared across languages? Michaelov et al. (2023). Cont.

- Some evidence for crosslingual structural priming in general;
- Crosslingual transfer can happen at the level of grammatical structures beyond token level!
- Structural representations in LMs is abstract enough to generalize beyond sentences.

Figure 1: Human and language model results for crosslingual structural priming experiments.

Is the same structural representations shared across languages? Michaelov et al. (2023). Cont.

- Some evidence for crosslingual structural priming in general;
- Crosslingual transfer can happen at the level of grammatical structures beyond token level!
- Structural representations in LMs is abstract enough to generalize beyond sentences.

Figure 1: Human and language model results for crosslingual structural priming experiments.

One final tweak: what about Inverse Frequency Effect? Structural Priming as a form of In-context Learning

Do LLMs show the Inverse Frequency Effect? Jumelet et al. (2024) and Zhou et al. (2024)

Do Language Models Exhibit Human-like Structural Priming Effects?

Jaap Jumelet¹ Willem Zuidema

Willem Zuidema¹ Arabella Sinclair²

¹Institute for Logic, Language and Computation ²School of Natural and Computing Sciences University of Amsterdam University of Aberdeen

jumeletjaap@gmail.com w.h.zuidema@uva.nl

arabella.sinclair@abdn.ac.uk

ets?

Is In-Context Learning a Type of Error-Driven Learning? Evidence from the Inverse Frequency Effect in Structural Priming

Zhenghao Zhou

Robert Frank

R. Thomas McCoy

Yale University 370 Temple Street New Haven, CT 06511 {herbert.zhou, robert.frank, tom.mccoy}@yale.edu

Do LLMs show the Inverse Frequency Effect? Jumelet et al. (2024) and Zhou et al. (2024)

Do Language Models Exhibit Human-like Structural Priming Effect

Willem Zuidema¹ Arabella Sinclair² Jaap Jumelet¹

¹Institute for Logic, Language and Computation ²School of Natural and Computing Sc University of Amsterdam University of Aberdeen

jumeletjaap@gmail.com w.h.zuidema@uva.nl

arabella.sinclair@abdn.ac.uk

- Assumption from Psycholinguists: only some error-driven learning mechanism could lead to the IFE.

 - order to be sensitive to the verb bias information]

ets?	
ciences	
:	

Is In-Context Learning a Type of Error-Driven Learning? Evidence from the Inverse Frequency Effect in Structural Priming

Zhenghao Zhou

R. Thomas McCoy Robert Frank Yale University 370 Temple Street New Haven, CT 06511 {herbert.zhou, robert.frank, tom.mccoy}@yale.edu

• IF [LMs show the IFE without explicit gradient update (by fine-tuning)]

THEN [in-context learning must be some error-driven based mechanism in

Language Model (fine-tuned)

- Predictions

 - Concatenation Mode: (no weight update) IFE ?

Fine-tuning Mode: (with explicit weight update) IFE

- **IFE:** double negative slopes

• Standard priming: blue has a higher intercept than orange

IFE: double negative slopes \bullet

• Standard priming: blue has a higher intercept than orange

IFE: double negative slopes \bullet

• Standard priming: blue has a higher intercept than orange

What have we learned?

- Human priming effects at multiple linguistic levels
 - semantic, phonological, orthographical, and structural;
- Two ways of simulating structural priming in LMs
 - Fine-tuning, Concatenation (few-shot, in-context learning)
- LMs show qualitatively human-like priming effect
 - Lexical boost, inverse frequency;
 - Semantic similarity & plausibility, recency, cumulativity, etc.
 - Crosslingual structural priming;
- Evidence for abstract structural representations, though not totally independent from semantic information.

p.s. Octopus again....

Bender & Koller 2020: LMs cannot learn to understand meaning solely through form / syntax / statistical regularity...?

The Octopus Test from:

Climbing towards NLU: On Meaning, Form, and Understanding in the Age of Data

Emily M. Bender University of Washington Department of Linguistics ebender@uw.edu

Alexander Koller Saarland University Dept. of Language Science and Technology koller@coli.uni-saarland.de

Opening Demonstrations: credit to Sophie Hao and Bob Frank

