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Abstract

Large language models (LLMs) have shown
the emergent capability of in-context learning
(ICL). One line of research has claimed that
ICL is functionally equivalent to gradient de-
scent, a type of error-driven learning mecha-
nism. In this paper, we introduce a new way
of diagnosing whether ICL is functionally per-
forming error-driven learning. Our approach is
based on the inverse frequency effect (IFE)—a
phenomenon in which an agent’s behavior is
influenced to a greater degree when presented
with improbable examples as compared to more
likely ones. The IFE has previously been identi-
fied in psycholinguistics where humans exhibit
the IFE in the context of structural priming (the
tendency for people to produce sentence struc-
tures they have encountered recently). In that
context, the IFE has been used as evidence that
human structural priming must involve error-
driven learning mechanisms. In our experi-
ments, we simulated structural priming with
ICL and found that LLMs indeed display the
IFE, with the effect being stronger in larger
models. We conclude that at least in the case
we studied, ICL is indeed a type of error-driven
learning, supporting the hypothesis that an er-
ror signal is implicitly computed in the forward
pass during ICL. Our results suggest that both
humans and LLMs make use of error-driven
processing mechanisms in on-line processing.1

1 Introduction

To what extent do humans and language models
use similar processing mechanisms? In some ways,
language processing by language models and hu-
man learners appears to be substantially different.
Humans display the ability to quickly and flexibly
adapt to new contexts, while language models have
historically required massive amounts of training
data and a large number of parameters to exhibit

1Code is available at: https://github.com/
herbert-zhou/ICL_IFE

human-like performance. Yet recent pre-trained
large language models (LLMs) have shown the ca-
pacity to perform in-context learning (ICL): they
flexibly adapt to novel tasks with only a small num-
ber of demonstrations provided as prompts in the
context window without any parameter updates
(Brown et al., 2020). This emergent capability
could provide a way to bridge the divide between
language models and humans: because ICL enables
LLMs—like humans—to flexibly adapt to novel
contexts, perhaps ICL shares important properties
with the processing mechanisms used by humans.

Within the body of research about why ICL
arises and how it operates, one line of work has
aimed to deepen our theoretical understanding of
ICL by offering functional interpretations of ICL
as a kind of implicit gradient descent during infer-
ence. Von Oswald et al. (2023) demonstrate that
Transformer models, with appropriate choices of
parameters, can process in-context demonstrations
in a way that is functionally equivalent to perform-
ing gradient updates on the same demonstration
examples. Garg et al. (2022), Zhang et al. (2024),
and Ahn et al. (2024) show that standard Trans-
formers (Vaswani et al., 2017) can be trained to
implement learning algorithms for linear regres-
sions under ICL-based training objectives. Dai
et al. (2023) provide a mathematical construction
showing a dual form between Transformer atten-
tion and gradient descent and interpreted ICL as a
meta-optimization process that performs implicit
fine-tuning. However, Shen et al. (2023) argue that
the importance of these theoretical demonstrations
is limited in that they do not take ICL to be an emer-
gent property, instead assuming a training objective
that optimizes for ICL. These demonstrations there-
fore deviate from actual LLMs pre-trained with
natural data with a language modeling training ob-
jective. Indeed, Shen et al. find inconsistencies
between ICL and gradient descent in real models,
and therefore leave the equivalence between ICL
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and gradient descent as an open question.
In this paper, we aim to better characterize what

kind of learning mechanism ICL is by drawing a
connection between ICL and human learning mech-
anisms, using a case study that allows us to evalu-
ate off-the-shelf LLMs using natural language data.
Specifically, we investigate whether ICL is a type
of error-driven learning such that an error signal
is implicitly computed during the forward pass.
By focusing on this question, we take some first
steps toward understanding whether ICL involves
implicit gradient descent because gradient descent
is one type of error-driven learning. To approach
this question, we treat ICL as a processing mecha-
nism of LLMs and borrow insights from methods
of studying processing mechanisms in humans: we
examine to what extent LLMs show the inverse
frequency effect (IFE), a phenomenon in human
structural priming (Branigan and Pickering, 2017)
that has been argued to require an error-driven pro-
cessing mechanism in humans, implicit learning
(e.g., Chang et al., 2006). We focus our attention
on the widely studied linguistic phenomenon of the
dative alternation where the IFE has been robustly
attested in humans. We demonstrate that LLMs not
only show a robust IFE under standard fine-tuning
(which involves explicit gradient descent, a type
of error-driven learning), but also varying degrees
of the IFE under the ICL setting, with larger mod-
els showing a stronger IFE. Given the correlation
between ICL ability and model size, we use our re-
sults to conclude that, at least in the cases we study,
ICL is indeed an error-driven learning mechanism.

Overall, our results suggest that error-driven
learning is an aspect of processing shared by
humans and ICL-using LLMs. Our study has
implications for both NLP/ML (1, 2, & 3) and
linguistically-motivated analysis of LLMs (4 & 5):

(1) We find evidence that ICL in off-the-shelf
LLMs can be viewed as a form of error-
driven learning in at least some cases.

(2) We show how the IFE can serve as a di-
agnostic for error-driven learning, paving
the way for future work that can use this
diagnostic to further investigate the circum-
stances under which ICL functions like
error-driven learning.

(3) We generalize the notion of ICL beyond
the standardly assumed prompt format of
input-output pairs, establishing a connec-

tion between priming and prompting.

(4) We show that LLMs qualitatively display
an important property of human language
processing: the IFE in structural priming.

(5) While most human-LLM comparisons fo-
cus on representations, our experiments go
one step further by analyzing the processing
mechanisms used by LLMs.

2 Background and Related Work

In this section, we lay out the building blocks neces-
sary for motivating why we use the IFE to diagnose
the error-driven nature of ICL. Our experimental
approach is formally described in Section 3.1.

2.1 Structural Priming in Psycholinguistics
Encountering a syntactic structure can predispose
speakers to repeat that structure in the near future,
a phenomenon known as syntactic priming (Bock,
1986). For example, after encountering a double
object (DO) sentence (e.g., Alice gave Bob a book),
speakers tend to produce another DO structure (e.g.,
The student sent the professor a letter) rather than
a semantically equivalent prepositional dative (PD)
structure (e.g., The student sent a letter to the pro-
fessor). Structural priming has been interpreted as
an adaptation mechanism, where speakers adapt
lexical and syntactic predictions to the current con-
text (Jaeger and Snider, 2013), similar to the way
in which LLMs adapt their outputs on the basis of
prompts. Examples of priming typically involve
two sentences; we will refer to them as the prime
sentence and the target sentence, where the prime
sentence comes first and influences the form of the
target sentence.

One important aspect of structural priming is
the inverse frequency effect (Jaeger and Snider,
2008; Bernolet and Hartsuiker, 2010; Kaschak
et al., 2011): less-preferred syntactic alternatives
cause stronger overall priming than more-preferred
structures, where the degree to which a structure
is preferred is operationalized as its relative fre-
quency in the speaker’s experience. This can be
seen by looking at sentences involving verbs with
gradient structural preferences, or verb biases (or
alternation biases; see Hawkins et al., 2020 for a
systematic investigation of verb biases in neural
models). The verb give allows both prepositional
dative (PD) (The doctor gave a book to the judge)
and double object (DO) (The doctor gave the judge
a book) structures, but is biased toward (i.e., occurs
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more often with) DO in English. Under the IFE,
a “prime” sentence involving give in its (less pre-
ferred) PD structure will cause a greater priming
effect than a DO sentence, i.e., a PD prime will
increase the probability of a PD occurring more
than a DO prime will increase the probability of
a DO occurring. The strength of PD priming (i.e.,
the increase in the probability of a PD target given
a PD prime) inversely correlates with the expec-
tation of a PD prime, determined by its verb bias
(Bernolet and Hartsuiker, 2010).

Two theories have been proposed to account
for structural priming. Transient activation theory
(Pickering and Branigan, 1998) claims that the acti-
vation of structural representations from the prime
persists for a short time (in working memory) so
that it is easier to reactivate the same structure at
the next relevant opportunity. This form of tran-
sient activation theory does not however account
for the IFE because the amount of residual activa-
tion is independent from verb biases and does not
involve any error-driven mechanism. In contrast,
implicit learning theory (Chang et al., 2006) claims
that humans are continuously and dynamically ad-
justing their probabilistic knowledge concerning
the occurrence of grammatical structures (includ-
ing verb biases) on the basis of their experience
and use such information to predict the form of
linguistic input. Crucially, under standard theories
of learning, the update performed by the learner is
error-driven, such that a larger update is performed
in situations where the learner’s predictions are far-
ther from the truth. In the context of priming, this
would mean that priming strength is determined
by the difference between the learner’s predictions
and the actual prime sentence: the less the learner
expects the observed prime structure, the larger the
resulting error signal is that updates their expec-
tations for that structure in the future, yielding a
larger priming effect. Therefore, implicit learning,
unlike transient activation, predicts the IFE. The
two theories are not mutually exclusive and can co-
exist to account for priming, a framing known as
the dual mechanism account (Tooley and Traxler,
2010).

In this study, we assume the correctness of the
arguments from psycholinguistics that error-driven
learning mechanisms are necessary to explain the
IFE. Therefore, by examining whether LLMs show
the IFE in the ICL setting, we can infer whether
there is an implicit error signal computed in ICL.

2.2 Structural Priming in Neural Language
Models

Structural priming has been used as a tool for prob-
ing the mental representations of structure in hu-
mans, under the assumption that these represen-
tations define the notion of similarity underlying
priming (Branigan and Pickering, 2017). Previ-
ous works have adopted this paradigm for prob-
ing learned linguistic representations in neural
networks. van Schijndel and Linzen (2018) and
Prasad et al. (2019) show that LSTMs (Gulordava
et al., 2018) are capable of adapting to syntactic
structures under fine-tuning. Specifically, these
researchers fine-tune model weights on prime sen-
tences and test target sentence probabilities in the
updated model. This is a direct analog of the im-
plicit learning account of structural priming as it
involves weight updates. Recently, Sinclair et al.
(2022) have shown that the GPT2 family (Radford
et al., 2019) shows robust structural priming with-
out the use of explicit weight updates; when a prime
sentence is concatenated to its corresponding tar-
get sentence, the model assigns a higher probability
to the target sentence than it does when the target
sentence appears without a prime. Other works
have demonstrated crosslingual structural priming
in large language models (Michaelov et al., 2023),
suggesting that structural priming is robustly de-
tected in LLMs. In concurrent work, Jumelet et al.
(2024) provide a detailed study of the linguistic
factors that give rise to structural priming in cur-
rent state-of-the-art LLMs, including presenting
evidence that LLMs display the IFE; our work dif-
fers from theirs in that we study the IFE as a di-
agnostic for error-driven learning, while Jumelet
et al.’s goal is to compare LLM priming with hu-
man priming. In sum, there is a large body of work
demonstrating that LLMs, like humans, show struc-
tural priming. This sets the stage for our current
study of investigating the processing mechanisms
underlying priming.

3 Current Study

3.1 Overview of Our Approach

We first clarify our conceptualization of ICL. In
most of the literature, ICL is conceptualized as in-
volving explicit demonstration-answer pairs. How-
ever, Chen et al. (2024) find that parallel struc-
tures in pre-training data substantially contribute to
ICL capabilities in LLMs, where parallel structures
are defined as pairs of phrases that appear in the
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Figure 1: An overview of our experimental design.

same context window and that follow similar tem-
plates. Although these parallel structures are not
explicitly framed as input-output pairs for a task,
they can be conceptualized as in-context examples
of less-structured implicit “tasks” such as copy-
ing n-grams, repeating syntactic constructions, and
producing related types of world knowledge. In-
spired by this perspective, we conceptualize ICL as
a more generalized notion that involves a sensitivity
to parallelism through generic next-token predic-
tion: any text in the context window will influence
the model’s logits toward preferring similar text.
This generalized notion of ICL, namely, the con-
textual influence of prompts in the context window,
is analogous to priming in humans. The fact that
Chen et al. (2024) showed that parallel structures
in pre-training substantially contribute to the emer-
gence of ICL supports the view that we can frame
ICL in these more general, parallelism-focused
terms. Under this generalized framing, ICL can
produce structural priming: a model that observes
a sentence with a particular syntactic structure (say,
the DO structure) can use ICL to replicate that
syntactic structure, even though the sentence can-
not be cleanly viewed as a demonstration-answer
pair. That is, the less structured, implicitly defined
“task” encoded by the DO sentence used as the
prompt could be interpreted as “producing another
sentence following the DO structural template ex-
emplified in the prompt.”

Our research question is whether an error sig-
nal is implicitly computed during the forward
pass of processing the prompt in the general-
ized ICL setting. We investigate this question by
testing whether LLMs show the IFE in the ICL
setting. Given that (i) it has been argued by psy-
cholinguists that only error-driven learning mecha-
nisms can give rise to the IFE; (ii) processing the
prime sentence in the context window conditions
the probability of the target sentence in our gener-

alized notion of ICL; and (iii) standard structural
priming in the ICL setting has been robustly ob-
served, we hypothesize that the strength of the IFE
will positively correlate with the strength of the ICL
capability of LLMs: the stronger the ICL capability
is, the better the error signal will be computed in
the forward pass, leading to a stronger IFE. In par-
ticular, given recent empirical evidence showing
that larger models have stronger ICL capabilities
(e.g., Wei et al., 2023; Dong et al., 2024; Chen et al.,
2025), we further hypothesize that the scaling of
both model size and data size contributes to LLMs’
ICL capability. Thus, we test the hypothesis that
ICL becomes more like error-driven learning
with both model scale and data scale.

We simulate structural priming across LLMs
of various sizes with the two previously explored
methods mentioned in Section 2.2 (see Figure 1).
The Fine-Tuning mode updates the LLM’s pa-
rameters on the basis of a single prime sentence,
and the updated model is used to infer the proba-
bility of the target sentence. The Concatenation
mode instead uses (our generalized notion of) ICL,
where the prime sentence is concatenated with the
target sentence, so that the prime constitutes the
prompt/context at the point in which the proba-
bility of the target sentence is measured. The
Fine-Tuning mode serves as a sanity check that
LLMs are able to show the IFE with explicit error-
driven learning. Because of the nature of gradi-
ent descent, changes to model weights during fine-
tuning are a function of the degree to which a prime
sentence is correctly predicted. A more unexpected
prime will therefore give rise to larger gradients and
updates, as well as a larger priming effect. Once
we have demonstrated this result empirically, the
stage will then be set for our main focus: using the
Concatenation mode to diagnose whether ICL in-
volves implicit error-driven learning.
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3.2 Corpus
We adapted the Core Dative PRIME-LM Corpus
from Sinclair et al. (2022) to create our dataset. We
briefly introduce the relevant properties and refer
the readers to the original paper for details. The
dative corpus consists of sentences in two forms:

(6) DO: DPsubj V DPiobj DPdobj
e.g., A girl bought a guy a coffee.

(7) PD: DPsubj V DPdobj Prep DPiobj
e.g., A girl bought a coffee for a guy.

Each DP is a determiner with a common noun (120
distinct nouns in total). The corpus was constructed
in a way that ensures semantic plausibility and
controls for the degree of semantic association and
lexical overlap between prime and target sentences.

Since our goal is to study the IFE, we need to
ensure variation in the occurrence of verbs with
different verb biases in the the prime and target sen-
tences. To do this, for each prime sentence involv-
ing one of 22 possible verbs, we sampled 50 tar-
get sentences that have no lexical overlap with the
prime sentence. This means that the verbs in prime
and target sentences are always distinct. Each
prime-target pair can be instantiated structurally
in 4 different ways, depending on whether the tar-
get and prime sentences are PD or DO: tPD|pPD,
tPD|pDO, tDO|pPD, tDO|pDO (i.e., target sentence t
conditioned on prime p). This resulted in 92400
prime-target pairs.2 An example of tPD|pDO is “A
doctor brought a chief a plate. The secretary drew
the card for the band.”

We also created an alternative dataset of the same
size by replacing each indirect object DP with a
pronoun. This was motivated by a corpus study
(see Appendix A) that showed that the most com-
mon indirect objects in DO sentences are animate
pronouns, suggesting that it may be important to
consider pronouns in analyses of DO vs. PD sen-
tences. The importance of animacy has also pre-
viously been noted by Bresnan et al. (2007). The
presence and absence of pronouns lead to differ-
ent verb biases for LLMs, which affect their IFE
behaviors. We return to this point in the discussion.

3.3 Language Models
We study a set of Transformer models that have
been claimed to show ICL capabilities to varying
extents (Lee et al., 2024). First, we used GPT2

2We use t and p for individual target and prime sentences,
T and P for sets of targets and primes, and P for probability.

Figure 2: A demonstration of the IFE: a stronger prim-
ing effect of a DO prime is predicted as PD-bias in-
creases. The numerical values of the primed log proba-
bilities are hypothetical, for illustration purposes only.

(Radford et al., 2019) in three of its sizes (SMALL,
MEDIUM, LARGE), with 85M, 302M, and 708M
parameters, respectively. All versions were loaded
from the package transformerLens (Nanda and
Bloom, 2022). Second, we used Llama2 (Touvron
et al., 2023) in three versions: 7B (6.5B parame-
ters), 7B-CHAT (6.5B parameters), and 13B (13B
parameters). All versions were loaded using the
Huggingface transformers library (Wolf et al.,
2020). Finally, we used GPT3-base (Brown et al.,
2020) with the DAVINCI-002 version (175B param-
eters), accessed via the OpenAI API. The models
vary in size, and correspondingly, in their ICL ca-
pabilities, as it has been argued that larger models
show stronger ICL capability (e.g., Wei et al., 2023;
Dong et al., 2024; Chen et al., 2025). We predict
that there will be a stronger IFE as size increases.3

3.4 Quantifying Verb Biases
The verb bias for a specific verb is the likelihood
of producing structure X compared to the alterna-
tive structure Y . In human experiments, baseline
verb biases are estimated as the ratio of the num-
ber of times one structure occurs over the sum of
both structures; such occurrences can be counted
either in natural production experiments or in cor-
pus searches (Zhou and Frank, 2023). Here, we
compute a verb bias for each verb analogously as
the ratio of the model probability of one structure
over the sum of the probabilities of both structures.
The probability of a sentence s is the product of
probabilities assigned by LLMs to each token wi:
P(s) =

∏
i P(wi|w<i).This measures how likely

it is for the model to see or produce this sentence.
Then, given a set of sentences SV with ditransitive
verb V , where each sentence tPD with structure PD
always has its counterpart tDO in the opposite struc-

3We also tested the LSTM models from Gulordava et al.
(2018) with the Concatenation mode and found no evidence
of structural priming.
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ture of DO (see 6 and 7), the PD-bias of verb V
is the mean normalized probability of sentences in
structure PD:

bias(V,PD) =
1

|SV |
∑

tPD∈SV

P(tPD)

P(tPD) + P(tDO)

(1)
The DO-bias of verb V, i.e., bias(V,DO), is de-
fined analogously. We compute verb bias sepa-
rately for each model (see Appendix C for GPT3),
and use a model’s biases in our assessment of
whether it shows the IFE.

3.5 Simulating Structural Priming

As stated in Section 3.1, we use two modes to sim-
ulate structural priming. Following van Schijndel
and Linzen (2018), for the Fine-Tuning mode, we
update the parameters by fine-tuning the model on
a single prime sentence with learning rate 1e−5

for 10 epochs (see the full fine-tuning details in
Appendix B), and we use the updated model to do
inference on the target sentence. Following Sin-
clair et al. (2022), for the Concatenation mode,
we condition a target sentence on a prime sentence
through directly concatenating them, separated by
a period, without any weight updates.

The probability of the target sentence after prim-
ing is the product of probabilities assigned to its
tokens: P(tX |pX) =

∏
i P(tXi |pX , tX<i). Under

standard priming, the probability of the target sen-
tence tX should be greater after being primed by
a ditransitive prime sentence of either structure:
P(tX |pX) > P(tX) and P(tX |pY ) > P(tX). Be-
ing primed by the same structure should induce a
larger probability increase than being primed by
the opposite structure: P(tX |pX) > P(tX |pY ).

3.6 Predictions about the Inverse Frequency
Effect

Recall that, under the IFE, the priming strength
of structure X inversely correlates with the prime
verb’s X-bias. That is, the degree to which the
target production’s probability deviates from the
baseline is determined by the prime verb. Consider,
for example, the case in which the prime sentence
has a DO structure and the target sentence has a PD
structure (other combinations of structures work
analogously). For each prime verb V , we computed
the PrimeBias for the PD target structure given a
DO prime sentence, where PrimeBias is defined
as the normalized target probability primed by this
verb over a set of target sentences:

PrimeBias(PD|DO, V ) =
1

|TPD| · |P V
DO|

∑

tPD∈TPD

∑

pVDO∈PV
DO

P(tPD|pVDO)

P(tDO|pVDO) + P(tPD|pVDO)
(2)

As shown in Figure 2, the IFE predicts that with
a PD target and DO prime sentence, as the prime
verb V ’s PD-bias increases, the prime sentence is
less expected, resulting in a larger priming strength
towards the DO direction in the target produc-
tion, i.e., a smaller PrimeBias(PD|DO, V ) value.
Similarly, as PD-bias increases, a PD prime sen-
tence will result in a smaller priming strength to-
wards the PD direction in the target production,
i.e., again a smaller PrimeBias(PD|PD, V ) value.
Therefore, when plotting PrimeBias(PD|DO, V )
and PrimeBias(PD|PD, V ) against increasing
PD verb biases and fitting a line with linear re-
gression, the IFE predicts negative slopes for both
plots. Moreover, standard priming predicts that
PrimeBias(PD|PD, V ) should have a higher in-
tercept than PrimeBias(PD|DO, V ) since the for-
mer increases P(TPD) more than the latter.4

4 Results and Analysis

For each model and for each prime verb,
we plotted PrimeBias(PD|PD, V ) and
PrimeBias(PD|DO, V ) against increasing
verb biases and used linear regression to find the
relationship between priming strength and verb
biases. We report the 95% confidence intervals of
the fitted slopes to assess the significance of the
fitted lines, where intervals below 0 suggest that
the slopes are more likely to be negative.

4.1 Fine-Tuning Mode

We applied the Fine-Tuning mode to GPT2-
SMALL. As is shown in Figure 3, the TPD|PPD
condition has a larger intercept than the TPD|PDO
condition, suggesting that the Fine-Tuning mode
is able to capture standard structural priming. Fur-
ther, we observe negative slopes in both lines, sug-
gesting that the Fine-Tuning mode is able to cap-
ture the IFE. The 95% confidence interval for the
TPD|PDO condition is below 0, demonstrating a
stronger IFE than the TPD|PPD condition.

4The other two conditions, namely TDO|PPD and TDO|PDO,
are mathematically guaranteed to have slopes that are exactly
opposite from TPD|PPD and TPD|PDO, respectively, and the
intercept should be 1 minus the intercept of its counterpart.
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Figure 3: GPT2-SMALL shows a robust IFE under the
Fine-Tuning mode, shown by the two negative slope.

Overall, these results show that even the smallest
model we analyzed shows the IFE under explicit
error-driven weight updates. We did not carry out
this mode for larger models as fine-tuning on the
demonstration with GPT2-SMALL already satisfies
its sanity-check purpose: as already noted, we have
strong reason to expect that the Fine-Tuning mode
will show the IFE, given its explicit gradient-based
updates. We now turn to the crucial case of ICL,
to see whether the IFE arises even without explicit
weight updates.

4.2 Concatenation Mode

We applied the Concatenation mode to all models.
In Figure 4, we show one plot for each of the three
types of models (i.e., showing just one variant of
that model type and showing only the WithPronoun
condition) and report the results across all model
variants in Table 1 (see Appendix D for the full sta-
tistical results). For all models across all conditions,
the TPD|PPD intercept is greater than the TPD|PDO
intercept, showing the standard structural priming
effect, which is consistent with our prediction. For
the IFE, we found that all three sizes of GPT2
failed to show the IFE, as the slopes are either pos-
itive or close to zero. This suggests that, in GPT2,
priming strength is not correlated with verb bias un-
der our metric. All three LLAMA2 models showed
negative slopes in both cases, which is consistent
with the IFE. However, only in the WithPronoun
TPD|PDO condition are the 95% confidence inter-
vals constantly below 0 across the three models,
suggesting that LLAMA2 displays the IFE but in
a noisy way that is not fully robust. Finally, for

GPT3, both TPD|PPD and TPD|PDO under the With-
Pronoun condition have their confidence intervals
below 0, while the confidence intervals in both case
in the NoPronoun condition contain 0.

The WithPronoun DO-PD conditions of all three
LLAMA2 models and GPT3 are statistically sig-
nificant with p < 0.0001. Models at least as large
as LLAMA2-13B show at least marginal statistical
significance in all conditions while smaller models
do not. These results support our hypothesis that
larger models show a more significant IFE.

Therefore, besides corroborating the finding
from prior work that LLMs show structural prim-
ing effects, the current results suggest that larger
models tend to show a stronger IFE than smaller
models, meaning that IFE strength correlates
with ICL capability since larger models also typ-
ically perform better at ICL than smaller models
(Brown et al., 2020). Assuming that ICL capability
correlates with LLM size, given the currently ob-
served pattern, we predict that larger models such
as GPT4 should show an even stronger IFE.

4.3 The Distinction between the WithPronoun
vs. NoPronoun Conditions

As shown in Table 1, the majority of cases with
their 95% confidence intervals excluding 0 are the
WithPronoun TPD|PDO cases. Why the IFE arises
more strongly in the WithPronoun condition than
the NoPronoun condition remains unclear. One
major difference between these conditions lies in
the default verb biases: as shown in Figure 5 in
Appendix C, GPT3 shows an overwhelming bias
towards PD without pronouns but a reverse pattern
favoring DO with pronouns. This pattern holds
across all models and is consistent with statistics
obtained from our corpus parse. One possible con-
clusion is that the most common indirect object
DPs in the DO sentences are animate pronouns,
causing the model to assign a higher probability
to pronoun sentences. The asymmetry between
the WithPronoun and NoPronoun conditions can
be explained by our claim that ICL becomes more
like error-driven learning with both model scale
and data scale (see Section 3.1). The role of model
scale has already been demonstrated in Table 1 (i.e.,
larger models show stronger IFE in general); here
we elaborate on the role of data scale, which is
somewhat more subtle.

In the corpus study mentioned in Appendix A,
we found that pronominal indirect object (IO) sen-
tences are more common than non-pronominal
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Figure 4: The IFE across models of different sizes in the WithPronoun condition under the Concatenation mode.

Intercept Slope 95% CI of Slopes

Model Pronoun Obj? PD-PD DO-PD PD-PD DO-PD PD-PD DO-PD

GPT2-small True 0.370 0.278 0.011 -0.007 (-0.049, 0.072) (-0.058, 0.044)
GPT2-small False 0.746 0.653 0.014 0.006 (-0.042, 0.07) (-0.06, 0.072)
GPT2-medium True 0.351 0.256 -0.013 -0.026 (-0.078, 0.053) (-0.073, 0.022)
GPT2-medium False 0.748 0.590 -0.023 -0.035 (-0.079, 0.032) (-0.125, 0.054)
GPT2-large True 0.330 0.241 0.011 -0.037+ (-0.043, 0.065) (-0.09, 0.015)
GPT2-large False 0.698 0.487 -0.003 -0.02 (-0.062, 0.055) (-0.098, 0.058)
Llama-7b True 0.392 0.229 -0.02 -0.086∗∗∗∗ (-0.067, 0.026) (-0.126, -0.045)
Llama-7b False 0.807 0.627 -0.026 -0.111+ (-0.102, 0.049) (-0.279, 0.057)
Llama-7b-chat True 0.413 0.263 -0.012 -0.095∗∗∗∗ (-0.067, 0.043) (-0.146, -0.044)
Llama-7b-chat False 0.788 0.605 -0.013 -0.102 (-0.115, 0.089) (-0.289, 0.085)
Llama-13b True 0.434 0.256 -0.059∗∗ -0.099∗∗∗∗ (-0.113, -0.005) (-0.134, -0.063)
Llama-13b False 0.859 0.685 -0.066+ -0.177∗ (-0.163, 0.031) (-0.388, 0.033)
GPT3-davinci-002 True 0.403 0.223 -0.078∗∗∗∗ -0.078∗∗∗∗ (-0.121, -0.035) (-0.114, -0.043)
GPT3-davinci-002 False 0.851 0.632 -0.064+ -0.145∗ (-0.153, 0.025) (-0.301, 0.012)

Table 1: The intercept, slope, and 95% confidence interval of the fitted lines for each condition under the
Concatenation mode. We mark the p-values of the fitted slopes with the following notation: * for p ≤ 0.05, ** for
p ≤ 0.01, **** for p ≤ 0.0001, and + for p ≤ 0.1 (marginally significant). 95% confidence intervals of the fitted
slopes below zero are bold (which means the fitted slopes are more statistically significant to be negative).

ones in the OpenWebText corpus. Since larger
models have seen more pronominal IO sentences
compared to non-pronominal ones, they are ex-
pected to perform more like error-driven learning
for pronominal IO sentences than non-pronominal
IO sentences in ICL, under the assumption that data
scale (like model scale) increases the strength of
the IFE. Such relationships between data scale and
the strength of ICL-related effects have also been
observed in McCoy et al. (2024), who showed that
LLMs displayed better ICL performance on high-
probability sentences than low-probability ones.
This observation could also potentially explain the
interesting finding from Sinclair et al. (2022) that
structural priming in LLMs (to a greater degree
than in humans) is modulated by semantic plau-
sibility: semantically plausible inputs are better
represented in the training data, leading to more
ICL/structural priming.

One further empirical observation from our ex-
periments supports this reasoning: for Llama2-13B
and GPT3, we observed (marginally) significant
IFE (p < 0.1 or p < 0.05) for the NoPronoun condi-
tions, although it is a smaller effect than in the With-
Pronoun conditions. The fact that there are signifi-
cant effects in both cases suggests that the asymme-
try between the two conditions is quantitative rather
than qualitative. This graded view aligns well with
the data-scale-based account: in addition to the
difference of IFE significance explained by model
scale, the across-condition differences within sin-
gle models are accounted for by the fact that the
model is trained on more with-pronoun dative sen-
tences than without-pronoun ones, which makes
the model better approximate error-driven learning
in ICL with the with-pronoun ones, which leads to
a more significant IFE as we have observed.
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5 Discussion and Conclusion

Evidence that ICL is implicitly an error-driven
learning mechanism We started with the ques-
tion of whether ICL could be a processing mecha-
nism of LLMs that can capture the flexibility and
adaptability of human learning mechanisms. One
type of error-driven learning mechanism that sup-
ports flexible adaptation to data is gradient descent.
Motivated by previous theoretical proposals that
ICL could in principle be implicitly performing
gradient descent or fine-tuning, we attempted to
better characterize what kind of learning ICL is in
actual models. We focused on one particular aspect
of ICL: whether it involves an implicit error signal
during the forward computation. In contrast to pre-
vious analyses of ICL, we test standard LLMs with
natural language data.

Having established a connection between ICL
and human structural priming, we used the IFE
to diagnose whether LLMs behave as if they are
implicitly performing error-driven learning when
processing a prime sentence. The very nature of
the IFE requires an error-driven mechanism: pro-
cessing must in some way be sensitive to the er-
ror signal, i.e., the amount of divergence from a
model’s expectations. In the case of DO/PD sen-
tences, the IFE is defined based on verb biases: the
error signal is created by the degree of mismatch
between the expectation on structural alternatives
based on the verb bias of the prime verb and the
actual perceived prime structure. The psycholin-
guistic literature discussed in Section 2.1 was the
first to identify the logic of this connection between
the IFE and error-driven learning, and it is this logic
that we are employing in the framing of this paper.
Note however that our argumentation does not in
any way assume that ICL involves the same mech-
anism as human implicit learning.

We found that LLMs do indeed display the IFE
in many cases, particularly in larger models. These
findings support the hypothesis that an error signal
is implicitly computed in the forward pass of ICL.
Differences between models suggests that ICL only
takes on a gradient-descent-like nature in larger
models. More speculatively, these results raise the
possibility that error-driven learning might be a
crucial property that enables generalization from a
small number of samples, an ability that is shared
by human learners and (to some extent) LLMs per-
forming ICL. Our study not only provides behav-
ioral results that align LLM and human behavior

in structural priming at the processing mechanism
level, but also demonstrates the possibility of study-
ing the nature of ICL with off-the-shelf pre-trained
LLMs and with naturalistic data.

ICL as a consequence of language model-
ing ICL is typically understood as involving
demonstration-answer pairs in the prompt. Inspired
by data-centric views that explain ICL from the dis-
tributional properties of pre-training data , we pro-
posed a generalized notion of ICL that is sensitive
to general parallelisms. Therefore, ICL could be
viewed as a side product of the general propensity
for structural parallelism in the language modeling
task. We leave this perspective for future study.

Future Directions In this study, we focused on
one single “task”, namely selecting DO versus PD
sentence structures. If our reasoning is correct,
such that it is indeed the implicit error signal of the
ICL that results in LLMs’ capability of capturing
the IFE, then we predict that the IFE diagnostics
could be generalized to other ICL tasks, even non-
linguistic tasks. Future work could extend our cur-
rent method to additional ICL tasks. Finding the
IFE on a wider range of tasks would strengthen the
claim that ICL is driven by implicit error-driven
computation, while not observing the IFE on other
tasks would indicate that ICL only sometimes dis-
plays a gradient-descent-like character.

Limitations

Behavioral versus Mechanistic Accounts Al-
though ICL is generally identified as a phenomenon
at the behavioral level, having an explanation at the
mechanistic level would bring greater interpretabil-
ity and could contribute to more concrete theory
building. Our current study, despite using real pre-
trained models and naturalistic data, remains at the
behavioral level and is empirical in nature. Given
our current contribution of establishing a connec-
tion between ICL and human priming and using
the IFE as a way to diagnose whether ICL works in
a gradient-descent-like manner or not, future work
could improve our understanding by incorporat-
ing techniques from mechanistic interpretability to
explain our current finding at the mechanistic level.

Examining the IFE in Other Models As ICL
capability is often argued to scale with model size,
we predict in Section 4.2 that the IFE effect will
be more robust in larger models. Although the
difference in the IFE behavior between GPT2 and
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GPT3-BASE is substantial, we do not believe that
we have observed a saturation of the IFE because
increasing the confidence level to 99% could still
result in confidence intervals containing 0. GPT3-
BASE is currently the biggest model on which we
have access to the logit predictions, but we believe
the same behavioral test could be applied to larger
models in order to verify our prediction.
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A Finding pronoun probabilities in the
OpenWebText corpus with spaCy

As is mentioned in Section 3.2, in order to esti-
mate the verb biases represented in the training
corpus of GPT2 models, we parsed a fragment
(approximately 160 million tokens) of the Open-
WebText corpus (Gokaslan and Cohen, 2019) with
the Python package spaCy (Honnibal et al., 2020)
to get an estimate of the DO vs. PD ratio for each
verb. Specifically, we used the en_core_web_trf
specification of the spaCy model, and we identi-
fied the set of dative alternation sentences by doing
dependency parsing on each sentence. We found
that the verb biases from the corpus are less well-
represented in GPT2 models, motivating our deci-
sion to estimate verb biases by using model judg-
ments rather than corpus statistics; see Section 3.4.

The corpus parse results motivated us to inves-
tigate the impact of whether the indirect object
is a pronoun on the verb biases. Thus, we con-
structed the WithPronoun version of the corpus. To
do this, we approximated the distribution of the
natural occurrence frequencies over the set of En-
glish pronouns in dative alternation sentences from
a fragment of the OpenWebText corpus (Gokaslan
and Cohen, 2019), which is a reasonable proxy for
the closed WebText corpus that was used to train
the GPT2 models. Then, we counted the frequen-
cies of the set of English pronouns that occurred as
the indirect object of the ditransitive verb. The list

of pronouns and their frequencies are presented in
Table 2, sorted by frequency.

Pronoun Frequency

you 4621
me 2962
us 2959

him 2210
them 1847

it 1297
her 738

Table 2: The respective frequencies of the English pro-
nouns occurring as the indirect object of ditransitive
sentences in a fragment of the OpenWebText corpus.

To convert the existing dative alternation prim-
ing corpus to the WithPronoun version, we replaced
the indirect object of every sentence in the existing
corpus with one of the pronouns through random
sampling according to their respective relative fre-
quencies.

B Fine-tuning details

As is presented in Section 3.5, to simulate structural
priming in the Fine-tuning mode, we fine-tuned
a pre-trained GPT2-SMALL model on every prime
sentence and used the updated model to do infer-
ence on the target sentences.

We loaded the pre-trained GPT2-SMALL model
from the TransformerLens (Nanda and Bloom,
2022) package and used the train function from
TransformerLens to do fine-tuning. To avoid
catastrophic forgetting during fine-tuning, we ap-
plied a regularization term to the loss function for
gradient descent. We randomly sampled a fixed set
of 5000 adjacent tokens from the OpenWebText (so
that it resembles the distribution of the pre-training
data) and computed the loss on them of the pre-
trained GPT2-SMALL model. Then, at each step
during fine-tuning, we added to the loss term the
squared difference between the current loss and the
raw (pre-trained) loss of the model on these 5000
tokens, scaled by a coefficient λ = 0.8. We found
that this regularization term helped keep the model
stable during fine-tuning on a single sentence.

We did a hyperparameter search and chose the
set of parameters in Table 3. We used the de-
fault values from TransformerLens for the rest
of the relevant hyperparameters (such as warmup,
maximum gradient norm, etc.).
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Parameter Value

number of epochs 10
batch size 1

learning rate 1e−5

optimizer AdamW
lambda 0.8

Table 3: Hyperparameters used as the training configu-
ration for the Fine-tuning mode of structural priming
on GPT2-SMALL.

C Verb Biases represented in LLMs

See Figure 5 for details of the verb biases in GPT3.

D Full Statistics of the IFE Experiments
in Concatenation Mode

See Table 4 (as a supplement to Table 1) for the full
statistical metrics of the IFE experiments reported
in Section 4.2.
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Figure 5: Comparison of PD biases with (left) and without (right) pronoun for GPT3. As is shown in Equation. 1,
a high PD-bias means a larger proportion of probability assigned to the PD structure against the DO structure in
LLMs.

Std_Err r-value p-value R2 RMSE

Model Pronoun Obj? PD-PD DO-PD PD-PD DO-PD PD-PD DO-PD PD-PD DO-PD PD-PD DO-PD

GPT2-small True 0.021 0.018 0.119 -0.088 0.597 0.698 0.014 0.008 0.020 0.017
GPT2-small False 0.020 0.023 0.154 0.058 0.495 0.798 0.024 0.003 0.016 0.019

GPT2-medium True 0.023 0.017 -0.123 -0.327 0.585 0.138 0.015 0.107 0.023 0.016
GPT2-medium False 0.019 0.031 -0.258 -0.245 0.247 0.273 0.067 0.060 0.017 0.027

GPT2-large True 0.019 0.018 0.129 -0.416 0.568 0.054 0.017 0.173 0.019 0.018
GPT2-large False 0.020 0.027 -0.038 -0.163 0.868 0.469 0.001 0.026 0.018 0.024
Llama-7b True 0.016 0.014 -0.270 -0.803 0.224 0.000 0.073 0.645 0.015 0.013
Llama-7b False 0.027 0.059 -0.215 -0.387 0.336 0.076 0.046 0.149 0.019 0.042

Llama-7b-chat True 0.019 0.018 -0.138 -0.766 0.541 0.000 0.019 0.587 0.018 0.017
Llama-7b-chat False 0.036 0.066 -0.082 -0.327 0.718 0.137 0.007 0.107 0.024 0.044

Llama-13b True 0.019 0.012 -0.568 -0.872 0.006 0.000 0.323 0.760 0.018 0.011
Llama-13b False 0.034 0.074 -0.400 -0.473 0.065 0.026 0.160 0.224 0.019 0.042

GPT3-davinci-002 True 0.015 0.013 -0.755 -0.813 0.000 0.000 0.570 0.662 0.013 0.011
GPT3-davinci-002 False 0.031 0.055 -0.415 -0.507 0.055 0.016 0.172 0.257 0.020 0.035

Table 4: The standard error, r-value, p-value, R2 coefficient, and RMSE score for each condition under the
Concatenation mode.
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