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gradient descent? — in principle, yes...
e ICL performs implicit Bayesian
inference;
e ICL functionally performs gradient
descent;
e ICL as a meta-optimization process
equivalent to implicit fine-tuning;

Current Case Study: Is there an error-based
learning process in the forward pass? —
testing with off-the-shelf LLMs and natural
language!
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Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they
have recently encountered during production or comprehension.

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for
ditransitive predicates.

e DO: Alice sent Bob a letter.
e PD: Alice sent a letter to Bob.

E.g. [Bock 1986, Chang 2012]
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Inverse Frequency Effect (IFE)

Inverse Frequency Effect: the less preferred (lower frequency) syntactic
structure causes a stronger priming effect than the more preferred (higher

frequency) structural alternative.

Verb Bias:
buy is biased towards DO
design towards PD

~ TeolPpo

Prime in DO Structure Target in PD Structure

A doctor bought a chief a plate. The secretary drew the card for the band.

A doctor designed a chief a plate. The secretary drew the card for the band.

\ Greater priming effect! E.g. [Jaeger & Snider 2007]
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e Structure = movie review + arrow + sentiment label

Aterrible movie. >  negative
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ICL as Structural Priming?

e Instead of viewing “A terrible movie. > negative” as an
input-output pair, we can view it as a single “sentence” with a
particular structure:

e Structure = movie review + arrow + sentiment label

Aterrible movie. >  negative
e Framed this way, in-context learning is structural priming!

= The IFE as a diagnostic of the error-driven learning
mechanism in ICL!
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Corpus

22 x 50 (target sentences)
X
21 (prime sentences)

e 22 ditransitive verbs;

e 50 target sentences per verb;

e For each target sentence, pair it with a
prime sentence with each prime verb;

23100 <prime, target> pairs

Each <prime, target> pair = 4 structural combinations = 92400 trials.

DO prime + DO target DO prime + PD target

PD prime + DO target PD prime + PD target

Prime: A professor promised a student a letter. Target: The secretary drew the card for the boss.

Dataset adapted from Sinclair et al. 2022
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Quantifying Verb Biases and the IFE

Verb Bias of verb V on structure X:

P(tpp)
b’LO,S(V PD) |SV| thDESV P(tep)+P(tpo)

IFE: the priming effect for verb Vin DO form on PD targets

‘ ' P(teplpho)
PrimeBias(PD|D = . 0
( ‘ 07 V) |TPD|'|P1¥0| ZtPDGTPD Zpgoepg() P(tpo |Pgo)+P(tPD |pgo)
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Predictions on the IFE

P(Tep|PJ,)

g

Increasing PD Biases Increasing PD Biases

e IFE: double negative slopes;
e Standard Priming: PD-PD has higher intercept than DO-PD;
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Priming in LLMs

Fine-tuning Mode: fine-tuning the model with the prime sentence and use
the updated model to run the target sentence — with weight update;

PrimedBias
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Even GPT2-small
shows significant
inverse frequency
effects!
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Priming in LLMs

Concatenation Mode: concatenating the prime and target sentences
as an ICL sequence and run the model — without weight update;
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effects!
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Takeaways

We used the IFE as a diagnostic on the error-driven nature of ICL
as a processing mechanism of LLMs.

e Generalizing beyond standard notion of ICL, connecting
priming with prompting §

e Larger LLMs show more significant IFE 2 9

e At least in the case of priming, error-driven learning
happens in ICL!
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Thanks for Listening!
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Priming

Structural priming
effect;

The Inverse
Frequency Effect
(IFE);

Two accounts:
transient activation
vs. implicit learning;

Current Study

Structural priming
effect;

The Inverse
Frequency Effect
(IFE);

Implicit learning, a
type of error-driven
learning, accounts
for the IFE;;

Discussion &
Implications

Larger models show
stronger IFE;

There is an implicit
gradient component
involved in ICL;
Humans and LLMs
share a similar
processing
mechanism!
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