Error-driven Learning in DFT: A case study of structural priming

Zhenghao Herbert Zhou Yale University LSA Annual Meeting Jan 10, 2025

Part of the Symposium Talk Series:

Dynamic Field Theory for unifying discrete and continuous aspects of linguistic representations

Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they have recently encountered during production or comprehension.

Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they have recently encountered during production or comprehension.

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for ditransitive predicates.

Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they have recently encountered during production or comprehension.

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for ditransitive predicates.

- DO: Alice sent Bob a letter.
- PD: Alice sent a letter to Bob.

E.g. [Bock 1986, Chang 2012]

Lexical Boost Effect (LBE)

Lexical Boost Effect: structural priming effect is stronger when the word that heads the primed structures is repeated between prime and target sentences.

E.g. [Pickering & Branigan 1998]

Lexical Boost Effect (LBE)

Lexical Boost Effect: structural priming effect is stronger when the word that heads the primed structures is repeated between prime and target sentences.

Alice <u>gave</u> Bob a book.

TARGET

E.g. [Pickering & Branigan 1998]

Lexical Boost Effect (LBE)

Lexical Boost Effect: structural priming effect is stronger when the word that heads the primed structures is repeated between prime and target sentences.

Carl <u>gave</u> Danis a letter.

Carl <u>showed</u> Danis a letter.

Alice <u>gave</u> Bob a book.

TARGET

PRIME

E.g. [Pickering & Branigan 1998]

Inverse Frequency Effect: the less preferred (lower frequency) syntactic structure causes a stronger priming effect than the more preferred (higher frequency) structural alternative.

8

Inverse Frequency Effect: the less preferred (lower frequency) syntactic structure causes a stronger priming effect than the more preferred (higher frequency) structural alternative.

Verb Bias: promise is biased towards DO design is biased towards PD

Inverse Frequency Effect: the less preferred (lower frequency) syntactic structure causes a stronger priming effect than the more preferred (higher frequency) structural alternative.

A professor designed a student a letter. <u>The secretary drew the card for the boss.</u>

10

E.g. [Jaeger & Snider 2007]

Inverse Frequency Effect: the less preferred (lower frequency) syntactic structure causes a stronger priming effect than the more preferred (higher frequency) structural alternative.

Prime Verb

Promised Buy Find Keep Design

Structural Priming as Linguistic Adaptation

Linguistic Adaptation: the linguistic knowledge representations that are used for language processing **change** in response to language input.

Structural Priming as Linguistic Adaptation

Linguistic Adaptation: the linguistic knowledge representations that are used for language processing **change** in response to language input.

- LBE is explained by transient activation theory (short-term);
- IFE is explained by implicit learning theory, an *error-driven mechanism*.

Structural Priming as Linguistic Adaptation

Linguistic Adaptation: the linguistic knowledge representations that are used for language processing **change** in response to language input.

- LBE is explained by transient activation theory (short-term);
- IFE is explained by implicit learning theory, an *error-driven mechanism*.

[E.g. Chang 2012]

- e: to-field coupling, Gaussian stimuli;
- e: to-node coupling, activation stimuli;
- -: excitatory coupling;
- - -: inhibitive coupling

- •: to-field coupling, Gaussian stimuli;
- e: to-node coupling, activation stimuli;
- -: excitatory coupling;
- - -: inhibitive coupling

• Verb Bias Field [hosting both prediction and production]: probabilistic information of producing one structure over the other;

- e: to-field coupling, Gaussian stimuli;
- e: to-node coupling, activation stimuli;
- -: excitatory coupling;
- - -: inhibitive coupling

Prime Verb	<u>Verb PD Bias</u>
Bring	0.23
Buy	0.27
Find	0.41
Draw	0.52
Design	0.77

- Verb Bias Field [hosting both prediction and production]: probabilistic information of producing one structure over the other;
- **Contrastive Field** [hosting error signal computation]: a space for computing the difference between expected and actual information;
 - e: to-field coupling, Gaussian stimuli;
 - e: to-node coupling, activation stimuli;
 - -: excitatory coupling;
 - - -: inhibitive coupling

Processing Steps in DFT

Incrementally perceiving or processing the prime sentence:

• (i) perceiving the prime verb only;

Incrementally perceiving or processing the prime sentence:

- (i) perceiving the prime verb only;
- (ii) generating an expectation on the continuation of the sentence;

Incrementally perceiving or processing the prime sentence:

- (i) perceiving the prime verb only;
- (ii) generating an expectation on the continuation of the sentence;
- (iii) perceiving the structure of the sentence;

Error-signal computation:

• (iv) compare the expectation of the probabilities of DO and PD versus the actual perceived prime structure.

Error-signal computation:

• (iv) compare the expectation of the probabilities of DO and PD versus the actual perceived prime structure.

> ***The magnitude of this difference is proportional to the final priming strength.

Producing the target sentence, as is affected by the prime:

• (v) generating an expected relative frequency between DO and PD according to the target verb's verb bias;

Producing the target sentence, as is affected by the prime:

- (v) generating an expected relative frequency between DO and PD according to the target verb's verb bias;
- (vi) shifting the relative frequency towards the direction of the prime structure;

Capturing the Inverse Frequency Effect

Capturing the Lexical Boost Effect

Small IFE: prime_{vb} = 95

Large IFE: prime_{vb} = 55

Simulation Results

Prime Condition	Prime Verb Bias	Target Production Position	Priming Effect
Extremely DO-biased	55 (-20)	81	(+6)
Slightly DO-biased	65 (-10)	79	(+4)
No bias	75 (0)	78	(+3)
Slightly PD-biased	85 (+10)	77	(+2)
Extremely PD-baised	95 (+20)	76	(+1)

• **Generalizing the Contrastive Field based approach?:** the <u>error-driven</u> <u>learning mechanism</u> could happen at multiple linguistic levels, modeled as a field hosting the computation of differences between stimuli from field couplings;

- **Generalizing the Contrastive Field based approach?:** the <u>error-driven</u> <u>learning mechanism</u> could happen at multiple linguistic levels, modeled as a field hosting the computation of differences between stimuli from field couplings;
- **Modeling abstract information in the DFT System?**: this study opens up the possibility of representing <u>frequency-based grammatical knowledge</u> within the DFT framework.

- **Generalizing the Contrastive Field based approach?:** the <u>error-driven</u> <u>learning mechanism</u> could happen at multiple linguistic levels, modeled as a field hosting the computation of differences between stimuli from field couplings;
- **Modeling abstract information in the DFT System?**: this study opens up the possibility of representing <u>frequency-based grammatical knowledge</u> within the DFT framework.
- Unifying Two Mechanisms into One Model?: past works have proposed two separate mechanisms for the different priming effects, one *activation*-based, and the other *error-driven learning*-based; I showed that they can be unified.

- **Generalizing the Contrastive Field based approach?:** the <u>error-driven</u> <u>learning mechanism</u> could happen at multiple linguistic levels, modeled as a field hosting the computation of differences between stimuli from field couplings;
- **Modeling abstract information in the DFT System?**: this study opens up the possibility of representing <u>frequency-based grammatical knowledge</u> within the DFT framework.
- Unifying Two Mechanisms into One Model?: past works have proposed two separate mechanisms for the different priming effects, one *activation*-based, and the other *error-driven learning*-based; I showed that they can be unified.
- **Future**: explicitly modeling the *"learning"* process by adding memory traces.

Thanks for Listening!

Appendix: Parameters

Parameter	Value
au	20
h	-5
eta	4
q	0.1
range	[-10, 10]
resolution	0.05
c_{11}	6
c_{21}	-3

(a) Parameter values for a node.

Parameter	Value
c_{exc}	20
c_{inh}	5
c_{alob}	0.9
σ_{exc}	5
σ_{inh}	15

(a) Parameters for the selection kernel (used for the **[Verb Bias]** field.

Parameter	Value
au	20
h	-5
eta	4
q	1
size	150

(b) Parameter values for a DNF.

Parameter	Value
c_{exc}	17.5
c_{inh}	15
c_{glob}	0
σ_{exc}	5
σ_{inh}	10

(b) Parameters for the selection kernel (used for the **[Contrastive]** field.