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Large Language Models (LLMs)

Autoregressive Models

GPT2 small: 117M
GPT2 medium: 345M
GPT2 large: 762M
LLAMA=2 7B: 7B
LLAMAZ2 7B-chat: 7B
LLAMA2 70B:
GPT3 davinci-oo2:

https://jalammar.github.io/illustrated-gpt2/



Large Language Models (LLMs)

Predicting the next word!

[Autoregressive|Models

GPT2 small: 117M
GPT2 medium: 345M
GPT2 large: 762M
LLAMA=2 7B: 7B
LLAMAZ2 7B-chat: 7B
LLAMA2 70B:
GPT3 davinci-oo2:

https://jalammar.github.io/illustrated-gpt2/



Large Language Models (LLMs)

. . utput tok
Predicting the next word! _ Token probabilities (logits)
° ’ 0.19850038 aardvark
Eﬁutoregresswe Models T T— T
output vector X token based on
I — it babilit
e GPT2 small: 117M " Gsample) "
‘ e
e GPT2 medium: 345M
o GPT2 large: 762M [ DECODER j
e LILAMA27B:7B
e LILAMA2 7B-chat: 7B
[ DECODER J
e LLAMA2 70B:
e GPT3 davinci-o02: jig
<S>
1 2 1024

https://jalammar.github.io/illustrated-gpt2/



Large Language Models (LLMs)

Predicting the next word! Token probabilities (l0gits)

Embeddings
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Parameters: weights and biases; updated during training; = long-term memory~ish;
Activations: temporarily variables generated and modified during generation (using LMs);

https://jalammar.github.io/illustrated-gpt2/
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In-context Learning: having a demonstration (i.e. several <example, answer>
pairs) of a (implicitly defined) task increases the model performance.

[Brown et al. 2020]



In-context Learning in LLMs

In-context Learning: having a demonstration (i.e. several <example, answer>
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ICL vs. In-weights Learning

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

[Brown et al. 2020]
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e Rapid: from a few examples;

e One-shot / Few-shot learning;
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No gradient updates:
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Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt



ICL vs. In-weights Learning

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

[Brown et al. 2020]

Fine-tuning
The model is trained via repeated gradient updates using a
\ large corpus of example tasks.
In'context Learning. sea otter => loutre de mer example #1
e No gradient updates:
e Rapid: from a few examples;
e One-shot / Few-shot learning; T —— I
In-weights Learning
(Fine-tuning):
Y Gradient_based; plush giraffe => girafe peluche example #N

e Slow: need many examples;
e Standard supervised learning;

[ .
* cheese => prompt




Open Question: ICL =(functional) Gradient Descent?
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E.g. [Xie et al. 2022, von Oswald et al. 2022, Dai et al. 2023]
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Open Question: ICL =(functional) Gradient Descent?

Finetuning
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Demonstration Examples

Query Example

In-context Learning as implicitly performing
gradient descent? — in principle, yes...
e ICL performs implicit Bayesian
inference;
e ICL functionally performs gradient
descent;
e ICL as a meta-optimization process
equivalent to implicit fine-tuning;

Current Case Study: Is there an error-based
learning process in the forward pass? —
testing with off-the-shelf LLMs and natural
language!

E.g. [Xie et al. 2022, von Oswald et al. 2022, Dai et al. 2023]



Interim Summary 1

In-context Learning (ICL) Structural Current Stud Discussion &
in LLMs Priming y Implications

e In-context learning
vs. In-weights
learning

e ICL as a processing
mechanism of LLMs;

e IsICL functionally
performing some
error-driven
learning?
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Structural Priming

Linguistic Adaptation: the linguistic knowledge representations that
are used for language processing change in response to language input.

E.g. [Bock 1986, Chang 2012]
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Linguistic Adaptation: the linguistic knowledge representations that
are used for language processing change in response to language input.

e B

i
“““

E.g. [Bock 1986, Chang 2012]



32

Structural Priming

Linguistic Adaptation: the linguistic knowledge representations that
are used for language processing change in response to language input.

Structural Priming: speakers tend to reuse the syntactic structures they
have recently encountered during production or comprehension.

E.g. [Bock 1986, Chang 2012]
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Structural Priming

Linguistic Adaptation: the linguistic knowledge representations that
are used for language processing change in response to language input.

Structural Priming: speakers tend to reuse the syntactic structures they
have recently encountered during production or comprehension.

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for
ditransitive predicates.

E.g. [Bock 1986, Chang 2012]
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Structural Priming

Linguistic Adaptation: the linguistic knowledge representations that
are used for language processing change in response to language input.

Structural Priming: speakers tend to reuse the syntactic structures they
have recently encountered during production or comprehension.

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for
ditransitive predicates.

e DO: Alice sent Bob a letter.

e PD: Alice sent a letter to Bob.
E.g. [Bock 1986, Chang 2012]
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Inverse Frequency Effect (IFE)

Inverse Frequency Effect: the less preferred (lower frequency) syntactic
structure causes a stronger priming effect than the more preferred (higher
frequency) structural alternative.

E.g. [Jaeger & Snider 2007]
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Inverse Frequency Effect: the less preferred (lower frequency) syntactic
structure causes a stronger priming effect than the more preferred (higher

frequency) structural alternative.
Verb Bias:
buy is biased towards DO
design towards PD

E.g. [Jaeger & Snider 2007]
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Inverse Frequency Effect (IFE)

Inverse Frequency Effect: the less preferred (lower frequency) syntactic
structure causes a stronger priming effect than the more preferred (higher

frequency) structural alternative.

Verb Bias:
buy is biased towards DO
design towards PD

~ TeolPpo

Prime in DO Structure Target in PD Structure

A doctor bought a chief a plate. The secretary drew the card for the band.

A doctor designed a chief a plate. The secretary drew the card for the band.

E.g. [Jaeger & Snider 2007]
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Inverse Frequency Effect (IFE)

Inverse Frequency Effect: the less preferred (lower frequency) syntactic
structure causes a stronger priming effect than the more preferred (higher

frequency) structural alternative.

Verb Bias:
buy is biased towards DO
design towards PD

~ TeolPpo

Prime in DO Structure Target in PD Structure

A doctor bought a chief a plate. The secretary drew the card for the band.

A doctor designed a chief a plate. The secretary drew the card for the band.

\ Greater priming effect! E.g. [Jaeger & Snider 2007]



39

Inverse Frequency Effect (IFE)

TPD | P DO Unprimed log probability = -50
4/\>
Prime in DO Structure Target in PD Structure

A doctor bought a chief a plate. The secretary drew the card for the band.
A doctor designed a chief a plate. The secretary drew the card for the band.
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Inverse Frequency Effect (IFE)

TPD | P DO Unprimed log probability = -50
4/\>
Prime in DO Structure Target in PD Structure

A doctor bought a chief a plate. The secretary drew the card for the band.
A doctor designed a chief a plate. The secretary drew the card for the band.

Prime Verb

Bring
Buy
Find

Draw

Design
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Inverse Frequency Effect (IFE)

TPD | P DO Unprimed log probability = -50
4—/\
Prime in DO Structure Target in PD Structure

A doctor bought a chief a plate. The secretary drew the card for the band.
A doctor designed a chief a plate. The secretary drew the card for the band.

Prime Verb Verb PD Bias Primed log probability (priming magnitude)
Bring 0.23 -50.5 (0.5)
Buy 0.27 -51.1 (1.1)
Find 0.41 -51.8 (1.8)
Draw 0.52 -52.2 (2.2)

Design 0.77 -52.9 (2.9)
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Inverse Frequency Effect (IFE)

TPD | P DO Unprimed log probability = -50

Prime in DO Structure Target in PD Structure

A doctor bought a chief a plate. The secretary drew the card for the band.
A doctor designed a chief a plate. The secretary drew the card for the band.

Prime Verb Verb PD Bias Primed log probability (priming magnitude)
Bring 0.23 -50.5 (0.5)
Buy 0.27 -51.1 (1.1)
Find 0.41 -51.8 (1.8)
Draw 0.52 -52.2 (2.2)
Design 0.77 -52.9 (2.9)

When priming in DO structure larger PD biases » a greater priming effect




Transient Activation

[Pickering & Branigan 1998]



Transient Activation

COMBINATE

COMBINATION,

- '
Quicker Decay! Structural Nodes

Increasing the activation values of the nodes.

COMBINATION

ON,

« Lexical Nodes

SYNTACTIC_
CATEGORY

[Pickering & Branigan 1998]



Transient Activation

COMBINATE

COMBINATION,

Quicker Decay!

Structural Nodes

COMBINATION Increasing the activation values of the nodes.

ON,

SYNTACTIC_ ™ “ Lexical Nodes
CATEGORY

e Activation instead of learning

e Explaining short-term
phenomena

e Inverse Frequency: X

[Pickering & Branigan 1998]



Implicit Learning

Structural Nodes

Lexical Nodes

E.g. [Chang et al. 2006]



Implicit Learning

Structural Nodes

Increasing link weights proportional to the
detected error from verb biases.

« Lexical Nodes

SYNTACTIC_
CATEGORY

E.g. [Chang et al. 2006]



Implicit Learning

Structural Nodes

Increasing link weights proportional to the
detected error from verb biases.

SYNTACTIC_
CATEGORY

Absolute
minimum

E.g. [Chang et al. 2006]



Implicit Learning

Structural Nodes

Increasing link weights proportional to the
detected error from verb biases.

« Lexical Nodes

SYNTACTIC_
CATEGORY

e Error-driven gradient update

e Explaining long-term
Phenomena

e Inverse Frequency:

E.g. [Chang et al. 2006]



Interim Summary 2

In-context Learning (ICL) Structural C ¢ Stud Discussion &
in LLMs Priming urrent study Implications
e In-context learning e Structural priming
vs. In-weights effect;
learning e The Inverse
e ICL as a processing Frequency Effect
mechanism of LLMs; (IFE);
e Is ICL functionally e Two accounts:
performing some transient activation
error-driven vs. implicit learning;

learning?
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ICL as Structural Priming?

e Instead of viewing “A terrible movie. > negative” as an
input-output pair, we can view it as a single “sentence” with a
particular structure:

e Structure = movie review + arrow + sentiment label

Aterrible movie. >  negative
e Framed this way, in-context learning is structural priming!

52



LMs are shaped by what they are trained on!
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Data Distributional Properties Drive
Emergent In-Context Learning in Transformers

Stephanie C.Y. Chan Adam Santoro Andrew K. Lampinen Jane X. Wang

DeepMind DeepMind DeepMind DeepMind
Aaditya K. Singh Pierre H. Richemond James L. McClelland
University College London DeepMind DeepMind, Stanford University
Felix Hill

DeepMind

LMs are shaped by what they are trained on!

Burstiness as a distributional property!
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LMs are shaped by what they are trained on!

Data Distributional Properties Drive
Emergent In-Context Learning in Transformers

Burstiness as a distributional property!

Compositional Structures!

Stephanie C.Y. Chan Adam Santoro Andrew K. Lampinen Jane X. Wang
DeepMind DeepMind DeepMind DeepMind
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University College London DeepMind DeepMind, Stanford University
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DeepMind

Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?

Sewon Min!?
Mike Lewis?

Xinxi Lyn'  Ari Holtzman!
Hannaneh Hajishirzi'-
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Parallelism!

Yanda Chen!

Chen Zhao*?

Parallel Structures in Pre-training Data Yield In-Context Learning

Zhou Yu! Kathleen McKeown!
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LMs are shaped by what they are trained on!

Burstiness as a distributional property!
Data Distributional Properties Drive
Emergent In-Context Learning in Transformers Compositional Structures!

S DepMind " DeopMind . DeapMind’ - Deapind " Rethinking the Role of Demonstrations:

What Makes In-Context Learning Work?

Aaditya K. Singh Pierre H. Richemond James L. McClelland
University College London DeepMind DeepMind, Stanford University
_— Sewon Min!?  Xinxi Lyn'  Ari Holtzman'  Mikel Artetxe’
elix . . e 3o o
DecpMind Mike Lewis’  Hannaneh Hajishirzi'?  Luke Zettlemoyer'?

Parallel Structures in Pre-training Data Yield In-Context Learning

Parallelism!

Yanda Chen! Chen Zhao*® Zhou Yu! Kathleen McKeown! He He?

= The IFE as a diagnostic of the error-driven learning
mechanism in ICL!



Current Approach: Overview

CONCATENATION MODE
(MAIN FOCUS)

do inference——

Language Model
(pre-trained)

Context

Prime sentence |
e.g. A doctor brought a O
chief a plate. _J

" Target sentence |

e.g. The secretary
| drew the card for the |
band.

Target Sentence
Probability

™ One single Prime y iaht
fine-tune_.| sentence | weig

10 epochs, learning rate = | update
FINE-TUNING MODE Lo les

Language Model do

(fine-tuned)

. —|
inference




Current Approach: Overview

CONCATENATION MODE Contait Target
(MAINFOCUs) | _ F—=—— —— — -
do inference : Prime sentence R | Bl et e | | Target Sentence
1 & 0\ A doctor brought | O e.g. The secretary Probability
Sl | | drew the card for the |
Language Model L —— — = i
(pre-trained)
Target
5 ane_siFgEP_rim_e y r— - - 1
fine-t | Sentehce |  weight Language Model do | |
ne-tune— Shohs amngre= | | update (fine-tuned) inference | Target sentence |

FINE-TUNING MODE L des J

Assumption from Priming Theories: only some error-driven learning
mechanism could lead to the IFE.

e Fine-tuning Mode: (with weight update) IFE
e Concatenation Mode: (no weight update) IFE ?



Simulations

e 22 ditransitive verbs;

e 50 target sentences per verb;

e For each target sentence, pair it with a
prime sentence with each prime verb;
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50 target sentences per verb;

For each target sentence, pair it with a
prime sentence with each prime verb;

22 x 50 (target sentences)
X
21 (prime sentences)

23100 <prime, target> pairs



Simulations

22 x 50 (target sentences)
X
21 (prime sentences)

e 22 ditransitive verbs;

e 50 target sentences per verb;

e For each target sentence, pair it with a
prime sentence with each prime verb;

23100 <prime, target> pairs

Each <prime, target> pair = 4 structural combinations = 92400 trials.

tpp|PPD, tPD|PDO, tDO|PPD, tDO|PDO

Prime: A doctor brought a plate to a chief. Target: The secretary drew the card for the band.



Quantifying Verb Biases and the IFE Simulations

Verb Bias of verb V on structure X:

P(tpp)
b’LO,S(V PD) |SV| thDESV P(tep)+P(tpo)




Quantifying Verb Biases and the IFE Simulations

Verb Bias of verb V on structure X:

P(tpp)
bZCLS(V PD) |SV| thDESV P(tep)+P(tpo)

Lo GPT3 Verb Bias Without Pronoun

PD Bias
° °




Quantifying Verb Biases and the IFE Simulations

Verb Bias of verb V on structure X:

P(tpp)
b’LO,S(V PD) |SV| thDESV P(tep)+P(tpo)

IFE: the priming effect for verb Vin DO form on PD targets

‘ ’ P(teplpho)
PrimeBias(PD|D = . 0
(PD|DO, V) Tep || PV ZtPDeTPD Zpgoép o P(tpolpho)+P(tep[Pho)



Predictions on the IFE Simulations

Increasing PD Biases
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P(Tep|Ppp)

AIIItt_

Increasing PD Biases
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Predictions on the IFE Simulations

P(Tep|PJ,)
A

RN

Increasing PD Biases Increasing PD Biases




Predictions on the IFE Simulations

P(Tep|PJ,)

g

Increasing PD Biases Increasing PD Biases




Predictions on the IFE Simulations

P(Tep|PJ,)

g

Increasing PD Biases Increasing PD Biases

e IFE: double negative slopes;
e Standard Priming: PD-PD has higher intercept than DO-PD;



Priming in LLMs Results

Fine-tuning Mode: fine-tuning the model with the prime sentence and use
the updated model to run the target sentence — with weight update;




Priming in LLMs Results

Fine-tuning Mode: fine-tuning the model with the prime sentence and use
the updated model to run the target sentence — with weight update;

FT GPT2-small IFE with Pronoun

0.6
® PD prime, PD target
DO prime, PD target
Y CERVE BUYHND
0.51 i A W PUR%E
PR03H§}3« ENDI Kl
Slope: -0.055 BW TAKE
%)
® 0.41 Intercept: 0.492
Ea Std_Err: 0.025
= 95%CI: (-0.125, 0.016)
7]
_E GLVE
E 0.3
MAKE
FLRORI PURGHASE
0.2 - DRAWATCH SWE__op DESIGN

0.1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

PD Biases of Prime Verbs



Priming in LLMs

REIIES

Fine-tuning Mode: fine-tuning the model with the prime sentence and use
the updated model to run the target sentence — with weight update;

PrimedBias

FT GPT2-small IFE with Pronoun

0.6

0.51

® PD prime, PD target
DO prime, PD target

w Gﬁg‘AVE BgY

PROMISHELSEND PUR%E Kl

Slope: -0.055 BW TAKE
0.4{ Intercept: 0.492

Std_Err: 0.025

95%CI: (-0.125, 0.016)

GIVE
0.3
MAKE
SRR PURCHASE

0.2 - DRAWATCH SWE__op DESIGN

0.1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

PD Biases of Prime Verbs

Even GPT2-small
shows significant
inverse frequency
effects!



Priming in LLMs Results

Concatenation Mode: concatenating the prime and target sentences
and run the model — without weight update;




Priming in LLMs Results

Concatenation Mode: concatenating the prime and target sentences
and run the model — without weight update;
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Priming in LLMs Results

Concatenation Mode: concatenating the prime and target sentences
and run the model — without weight update;
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Priming in LLMs Results

Concatenation Mode: concatenating the prime and target sentences
and run the model — without weight update;
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Interim Summary 3

In-context Learning (ICL)

in LLMs

In-context learning
vs. In-weights
learning

ICL as a processing
mechanism of LLMs;
Is ICL functionally
performing some
error-driven
learning?

Structural
Priming

Structural priming
effect;

The Inverse
Frequency Effect
(IFE);

Two accounts:
transient activation
vs. implicit learning;

Discussion &

Current Study Implications

Analogy between
priming and ICL;
Do LLMs show the
IFE? — yes, with
various degrees!
IFE as a diagnostic
of error-driven
learning!



Reasoning

[Assumption]
Psycholinguistic Theories: only some kinds of
gradient-based, error-driven learning mechanism
could give rise to the IFE.

[Connecting Priming to ICL] \

Having a prime sentence as the prompt in the

[Core Hypothesis]
If ICL involves a gradient component when
processing the context, then LLMs with
strong ICL capabilities should show the IFE.

context window conditions the probability /

distribution over the target sentence via ICL.

[Previous Works on Priming in LLMs]
LLMs do show human-like behaviors for standard
structural priming.

[Previous Works on LLMs' sizes and ICL]
The ICL capability scales with LLMs' size.

[Additional Hypothesis]
Because larger models have
stronger ICL capabilities,
they should display a more
significant IFE.




Takeaways

We used the IFE as a diagnostic on the error-driven nature of ICL
as a processing mechanism of LLMs.
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Takeaways

We used the IFE as a diagnostic on the error-driven nature of ICL
as a processing mechanism of LLMs.

e Generalizing beyond standard notion of ICL, connecting
priming with prompting §

e Larger LLMs show more significant IFE 2 9

e Atleast in the case of priming, error-driven learning

happens in ICL, supporting the hypothesis that [LLMs is
functionally performing gradient descent]
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Thanks for Listening!
Q&A Session 2

In-context Learning (ICL) Structural C ¢ Stud Discussion &
in LLMs Priming urrent study Implications
e In-context learning e Structural priming e Analogy between e Larger models show
vs. In-weights effect; priming and ICL? stronger IFE;
learning e The Inverse e Do LLMs show the e There is an implicit
e ICL as a processing Frequency Effect IFE? gradient component
mechanism of LLMs; (IFE); e IFE as a diagnostic involved in ICL;
e ICLis functionally e Two accounts: of error-driven e Humans and LLMs
equivalent to transient activation learning? share a similar
Gradient Descent? vs. implicit learning; processing

mechanism!



Open Discussion: activation vs. learning?

Enriching Transient Activation to simulate implicit learning?

prime verb target verb

. ©®

error-driven
priming signal | :
Verb Bias | .
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coupl: gI
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structure

Dynamic Field Theory Gradient Symbolic Computation




On-going Work 1: Task / | :

Context = ...
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On-going Work 1: Task / Function Vectors cont.

(a) (c)
[ [ * O v, = Ant FV
arrive:depart, small:big, common: rare The word "fast" means slow Ve onym
(b) (d) O v,= Eng-Spanish FV
[ { i +) h, : Hidden-state
amount:cantidad, win:ganar, dreams: suefios The word "fast" means rapido intervention
\ Y J \ Y J \ Y ] L Y J | Y )
Demonstrations [(x;1, ¥i1), (Xi2, ¥i2)] Query x;, Prediction y;, Novel zero-shot prompt  Execution of FV
*
(a) Input: "Italy, Russia, China, Japan, France" (b) BD
FV  Task Expected Output Vip
»” First-Copy Italy
First-Capital Rome
4D
Vpe  lastCory France Vac
Vin Last-Capital Paris )




On-going Work 2: IFE in other ICL “Tasks”?

If the IFE is a diagnostic for the error-driven nature of adaptation, then
we could apply it to any other ICL tasks;

1. Other structural priming instances:
a. Active-passive;
b. Complementizer (that) - priming;
2. Non-linguistic tasks where we can sort demonstration
difficulty w.r.t baseline performance;
a. Two-digit {addition, multiplication}: 10 x 10 is easier than 31 x
67;
b. Country-capital mapping: more commonly known <country,
capital> pairs leads to lower surprisal than less known pairs;
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GPT3 Verb Bias Without Pronoun
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Prime Verbs

Pronoun Corpus: replacing all indirect object with a pronoun;



Pronoun vs. NoPronoun: results

Intercept Slope 95% CI of Slopes
Model Pronoun Obj? PD-PD DO-PD PD-PD DO-PD PD-PD DO-PD
GPT2-small True 0.370  0.278 0.011 -0.007 (-0.049, 0.072)  (-0.058, 0.044)
GPT2-small False 0.746  0.653 0.014 0.006 (-0.042, 0.07) (-0.06, 0.072)
GPT2-medium True 0.351 0.256 -0.013 -0.026 (-0.078, 0.053) (-0.073, 0.022)
GPT2-medium False 0.748  0.590 -0.023 -0.035 (-0.079, 0.032)  (-0.125, 0.054)
GPT2-large True 0.330 0.241 0.011 -0.037* (-0.043, 0.065)  (-0.09, 0.015)
GPT2-large False 0.698  0.487 -0.003 -0.02 (-0.062, 0.055)  (-0.098, 0.058)
Llama-7b True 0392  0.229 -0.02 -0.086****  (-0.067,0.026)  (-0.126, -0.045)
Llama-7b False 0.807  0.627 -0.026 0.111t (-0.102, 0.049)  (-0.279, 0.057)
Llama-7b-chat True 0413  0.263 -0.012 -0.095****  (-0.067,0.043) (-0.146, -0.044)
Llama-7b-chat False 0.788  0.605 -0.013 -0.102 (-0.115,0.089)  (-0.289, 0.085)
Llama-13b True 0434  0.256 -0.059** -0.099****  (-0.113,-0.005) (-0.134, -0.063)
Llama-13b False 0.859  0.685 -0.066™" -0.177* (-0.163,0.031)  (-0.388, 0.033)
GPT3-davinci-002 True 0403 0.223 -0.078****  -0.078**** (-0.121,-0.035) (-0.114, -0.043)
GPT3-davinci-002 False 0.851  0.632 -0.064+ -0.145* (-0.153,0.025) (-0.301, 0.012)

Pattern: more significant
IFE results in the
WithPronoun condition
than the NoPronoun
condition;

Interpretation: ICL
capability correlates with
data scale — more
WithPronoun sentences in
the training data!



Future Direction: ERP as evidence of learning signal?

The N400 ERP component reflects an error-based implicit
learning signal during language comprehension

adaptation implicit memory
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Future Direction: ERP as evidence of learning signal,

cont.

SPECIAL ISSUE:

Cognitive Computational Neuroscience of Language 0 . .
Strong Prediction: Language Model Surprisal [ III
Explains Multiple N40O Effects

James A. Michaelov'”’, Megan D. Bardolph'”’, Cyma K. Van Petten?
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Neural language model gradients predict event-related brain potentials
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Radboud University
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LLMs as Psycholinguistic Subjects @

Existing Line of research: treating LMs as psycholinguistic subjects

and probing whether they have acquired the linguistic knowledge that
humans used for sentence processing.
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Existing Line of research: treating LMs as psycholinguistic subjects
and probing whether they have acquired the linguistic knowledge that
humans used for sentence processing.
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LLMs as Psycholinguistic Subjects

Existing Line of research: treating LMs as psycholinguistic subjects
and probing whether they have acquired the linguistic knowledge that
humans used for sentence processing.

What do RNN Language Models Learn about Filler-Gap Dependencies?

Ethan Wilcox!, Roger Levy?, Takashi Morita>*, and Richard Futrell®

'Department of Linguistics, Harvard University, wilcoxeg@qg.harvard.edu
?Department of Brain and Cognitive Sciences, MIT, rplevy@mit .edu
3Primate Research Institute, Kyoto University, tmorita@alum.mit.edu
“Department of Linguistics and Philosophy, MIT
>Department of Language Science, UC Irvine, rfutrell@uci.edu
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LLMs as Psycholinguistic Subjects @

Existing Line of research: treating LMs as psycholinguistic subjects

and probing whether they have acquired the linguistic knowledge that
humans used for sentence processing.

When a sentence does not introduce a discourse entity,
Transformer-based models still sometimes refer to it

Sebastian Schuster Tal Linzen
Center for Data Science Center for Data Science
Department of Linguistics Department of Linguistics
New York University New York University

schuster @nyu.edu linzen @nyu.edu



LLMs as Psycholinguistic Subjects

Existing Line of research: treating LMs as psycholinguistic subjects
and probing whether they have acquired the linguistic knowledge that
humans used for sentence processing.

Neural Language Models as Psycholinguistic Subjects: Representations of
Syntactic State

Richard Futrell!, Ethan Wilcox?, Takashi Morita’*, Peng Qian>, Miguel Ballesteros®, and Roger Levy’

'Department of Language Science, UC Irvine, rfutrell@uci.edu
2Department of Linguistics, Harvard University, wilcoxeg@g.harvard.edu
3Primate Research Institute, Kyoto University, tmorita@alum.mit.edu
“Department of Linguistics and Philosophy, MIT
Department of Brain and Cognitive Sciences, MIT, {pgian, rplevy}@mit .edu
‘IBM Research, MIT-IBM Watson Al Lab, miguel.ballesteros@ibm.com



Probing Classifiers
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Verb Bias: With Pronoun vs. No Pronoun
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Explanations?

Inverse Frequency Effect for FI-GPT2-small WithPronoun Squared

Normalized Target Probability After Priming

;. o : Implicit Learning Mode:
A - GPT2-small does have the
MES capability to capture the IFE!
: s There is some
) e Presence vs. absence of mechanism that
Error-driven weight —P>> functionally
update mechanism! performs gradient
e e ‘ orrvmman: update in LLMs!

Transient Activation
Mode: GPT2-small doesn’t
show the IFE, while larger

In-Context
Learning

models show stronger IFEs.




Thanks for Listening!

Q&A Session &

In-context Learning (ICL)

in LLMs

In-context learning
vs. In-weights
learning

ICL as a processing
mechanism of LLMs;
Is ICL functionally
performing some
error-driven
learning?

Structural
Priming

Structural priming
effect;

The Inverse
Frequency Effect
(IFE);

Two accounts:
transient activation
vs. implicit learning;

Current Study

Analogy between
priming and ICL?
Do LLMs show the
IFE?

IFE as a diagnostic
of error-driven
learning?

Discussion &
Implications

Larger models show
stronger IFE;

There is an implicit
gradient component
involved in ICL;
Humans and LLMs
share a similar
processing
mechanism!
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