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Is In-Context Learning a Type of 
Error-Driven Learning Mechanism?

Evidence from the Inverse Frequency 
Effects in Structural Priming
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● In-context learning 
vs. In-weights 
learning

● ICL as a processing 
mechanism of LLMs;

● Is ICL functionally 
performing some 
error-driven 
learning?

Discussion & 
Implications

● Larger models show 
stronger IFE;

● There is an implicit 
gradient component 
involved in ICL;

● Humans and LLMs 
share a similar 
processing 
mechanism;
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Model

In-context Learning:

● No gradient updates;
● Rapid: from a few examples;
● One-shot / Few-shot learning;

In-weights Learning 
(Fine-tuning):

● Gradient-based;
● Slow: need many examples;
● Standard supervised learning;

[Brown et al. 2020]



Open Question: ICL ≈(functional) Gradient Descent?

E.g. [Xie et al. 2022, von Oswald et al. 2022, Dai et al. 2023]

26



Open Question: ICL ≈(functional) Gradient Descent?

E.g. [Xie et al. 2022, von Oswald et al. 2022, Dai et al. 2023]

27

In-context Learning as implicitly performing 
gradient descent? — in principle, yes…
● ICL performs implicit Bayesian 

inference;
● ICL functionally performs gradient 

descent;
● ICL as a meta-optimization process  

equivalent to implicit fine-tuning;



Open Question: ICL ≈(functional) Gradient Descent?

E.g. [Xie et al. 2022, von Oswald et al. 2022, Dai et al. 2023]

28

In-context Learning as implicitly performing 
gradient descent? — in principle, yes…
● ICL performs implicit Bayesian 

inference;
● ICL functionally performs gradient 

descent;
● ICL as a meta-optimization process  

equivalent to implicit fine-tuning;

Current Case Study: Is there an error-based 
learning  process in the forward pass? — 
testing with off-the-shelf LLMs and natural 
language!
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Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they 
have recently encountered during production or comprehension.

E.g. [Bock 1986, Chang 2012]

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for 
ditransitive predicates.

● DO: Alice sent Bob a letter.
● PD: Alice sent a letter to Bob.
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Linguistic Adaptation: the linguistic knowledge representations that 
are used for language processing change in response to language input.

Phenomenon
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A doctor bought a chief a plate. The secretary drew the card for the band. 
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Prime in DO Structure                                                    Target in PD Structure

PD
DO

Verb Bias:
buy is biased towards DO
design towards PD

Phenomenon

Inverse Frequency Effect: the less preferred (lower frequency) syntactic 
structure causes a stronger priming effect than the more preferred (higher 
frequency) structural alternative.

Greater priming effect!
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When priming in DO structure larger PD biases a greater priming effect

Phenomenon
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Theory 1

Structural Nodes

Lexical Nodes

● Activation instead of learning 
● Explaining short-term 

phenomena
● Inverse Frequency: ❌

Quicker Decay!

Increasing the activation values of the nodes.
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Theory 2

Structural Nodes

Lexical Nodes

● Error-driven gradient update
● Explaining long-term 

Phenomena
● Inverse Frequency: ✅

Slower Decay!

Increasing link weights proportional to the 
detected error from verb biases.
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ICL as Structural Priming?
● Instead of viewing “A terrible movie. → negative” as an 

input-output pair, we can view it as a single “sentence” with a 
particular structure:

● Structure = movie review + arrow + sentiment label
                        A terrible movie.      →         negative

● Framed this way, in-context learning is structural priming!
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⇒ The IFE as a diagnostic of the error-driven learning 
mechanism in ICL! 

Parallelism!

Burstiness as a distributional property! 

Compositional Structures!
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Assumption from Priming Theories: only some error-driven learning 
mechanism could lead to the IFE.
● Fine-tuning Mode: (with weight update) IFE ✅
● Concatenation Mode: (no weight update) IFE ❓
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Corpus

● 22 ditransitive verbs;
● 50 target sentences per verb;
● For each target sentence, pair it with a 

prime sentence with each prime verb;

Each <prime, target> pair ⇒ 4 structural combinations ⇒ 92400 trials.
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Simulations

Prime: A doctor brought a plate to a chief. Target: The secretary drew the card for the band. 

22 x 50 (target sentences) 
x 

21 (prime sentences)
=

23100 <prime, target> pairs
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Verb Bias of verb V on structure X:
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Simulations

IFE: the priming effect for verb V in DO form on PD targets
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Simulations

● IFE: double negative slopes;
● Standard Priming: PD-PD has higher intercept than DO-PD;

Increasing PD Biases
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shows significant 
inverse frequency 
effects!
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Results

Concatenation Mode: concatenating the prime and target sentences 
and run the model — without weight update;

Larger models 
show more 
significant 
inverse 
frequency 
effects!
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Structural 
Priming

● Structural priming 
effect;

● The Inverse 
Frequency Effect 
(IFE);

● Two accounts: 
transient activation 
vs. implicit learning;

Current StudyIn-context Learning (ICL) 
in LLMs

Discussion & 
Implications

● Analogy  between 
priming and ICL;

● Do LLMs show the 
IFE? – yes, with 
various degrees!

● IFE as a diagnostic 
of error-driven 
learning!

● In-context learning 
vs. In-weights 
learning

● ICL as a processing 
mechanism of LLMs;

● Is ICL functionally 
performing some 
error-driven 
learning?
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Takeaways
We used the IFE as a diagnostic on the error-driven nature of ICL 
as a processing mechanism of LLMs.
● Generalizing beyond standard notion of ICL, connecting 

priming with prompting 🌓
● Larger LLMs show more significant IFE 🫢🧐
● At least in the case of priming, error-driven learning 

happens in ICL, supporting the hypothesis that [LLMs is 
functionally performing gradient descent] 🌟🌟🌟
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Structural 
Priming

● Structural priming 
effect;

● The Inverse 
Frequency Effect 
(IFE);

● Two accounts: 
transient activation 
vs. implicit learning;

Current Study

● Analogy  between 
priming and ICL?

● Do LLMs show the 
IFE?

● IFE as a diagnostic 
of error-driven 
learning?

In-context Learning (ICL) 
in LLMs

● In-context learning 
vs. In-weights 
learning

● ICL as a processing 
mechanism of LLMs;

● ICL is functionally 
equivalent to 
Gradient Descent?

Discussion & 
Implications

● Larger models show 
stronger IFE;

● There is an implicit 
gradient component 
involved in ICL;

● Humans and LLMs 
share a similar 
processing 
mechanism!
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Enriching Transient Activation to simulate implicit learning?

Dynamic Field Theory Gradient Symbolic Computation
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On-going Work 2: IFE in other ICL “Tasks”?

● If the IFE is a diagnostic for the error-driven nature of adaptation, then 
we could apply it to any other ICL tasks;

1. Other structural priming instances:
a. Active-passive;
b. Complementizer (that) - priming;

2. Non-linguistic tasks where we can sort demonstration 
difficulty w.r.t  baseline performance;
a. Two-digit {addition, multiplication}: 10 x 10 is easier than 31 x 

67;
b. Country-capital mapping: more commonly known <country, 

capital> pairs leads to lower surprisal than less known pairs;
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More Intricate Pattern: Pronoun vs. NoPronoun
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Pronoun Corpus: replacing all indirect object with a pronoun;



Pronoun vs. NoPronoun: results
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Pattern: more significant 
IFE results in the 
WithPronoun condition 
than the NoPronoun 
condition;

Interpretation: ICL 
capability correlates with 
data scale – more 
WithPronoun sentences in 
the training data!
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Future Direction: ERP as evidence of learning signal, 
cont.
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Verb Bias: With Pronoun vs. No Pronoun
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With PronounNo Pronoun



GPT2-small doesn’t show IFE in TA mode
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Explanations?
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Implicit Learning Mode: 
GPT2-small does have the 
capability to capture the IFE!

Transient Activation 
Mode: GPT2-small doesn’t 
show the IFE, while larger 
models show stronger IFEs.

Presence vs. absence of 
Error-driven weight 
update mechanism!

There is some 
mechanism that 

functionally 
performs gradient 

update in LLMs!

In-Context 
Learning
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Frequency Effect 
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● Two accounts: 
transient activation 
vs. implicit learning;

Current Study

● Analogy  between 
priming and ICL?

● Do LLMs show the 
IFE?

● IFE as a diagnostic 
of error-driven 
learning?

In-context Learning (ICL) 
in LLMs

Discussion & 
Implications

● Larger models show 
stronger IFE;

● There is an implicit 
gradient component 
involved in ICL;

● Humans and LLMs 
share a similar 
processing 
mechanism!

● In-context learning 
vs. In-weights 
learning

● ICL as a processing 
mechanism of LLMs;

● Is ICL functionally 
performing some 
error-driven 
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