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Abstract. The structural priming paradigm in psycholinguistics has been demon-
strated as a way of studying abstract structural representations in neural lan-
guage models. The current study expands this line of reasoning by testing lan-
guage models’ behaviors on the inverse frequency effect, a priming phenomenon
only predicted by implicit learning mechanisms. We showed that larger models
tend to show a stronger inverse frequency effect, and we hypothesize that model
sizes correlate with their in-context learning capability, interpreted as a form
of implicit fine-tuning. Our study inquires beyond probing representations into
language models’ processing mechanisms. We conclude that in-context learning
is a form of implicit learning shared between humans and language models.
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1 Introduction

A common interest among psycholinguists, computer scientists, and cognitive scientists
is to what extent do humans and language models (LMs) share similar processing
mechanisms. For psycholinguists, the validity of treating LMs as human-like subjects
and conducting behavioral tests on them has been questioned [13]. For the field of
artificial intelligence, understanding the processing mechanisms of LMs remains as
a core question for both interpretability and designing more human-like intelligent
systems [7]. This paper aims to improve our high-level understanding by suggesting
that implicit learning is a shared processing mechanism between humans and LMs.

In the field of neural network analysis, many studies have focused on the learned
internal linguistic representations of LMs. In particular, one line of research draws on
the structural priming paradigm, a central tool in psycholinguistics for probing human
syntactic representations [3]. Structural priming refers to the phenomenon that the
structure of a sentence makes the same structure more probable in a follow-up sentence.
This enables us to study the abstract syntactic representations constructed during
comprehension and production. Applying structural priming to LMs helps probing
whether the relevant syntactic representations are formed during processing. It has
been demonstrated that LMs show the standard structural priming effect observed in
humans [18, 20], which makes the priming method promising for further investigation.

⋆ I thank Robert Frank and Tom McCoy (Department of Linguistics, Yale University) for
advising me and offering insightful guidance on this study.
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The current work expands on previous studies of neural structural priming by infer-
ring the potential In-Context Learning (ICL) capability in LMs through testing their
behaviors on the inverse frequency effect (IFE), a phenomenon in human structural
priming that has been argued to require one particular learning mechanism in humans,
namely implicit learning [5]. Among various hypotheses on the underlying mechanisms
of ICL [21, 22], we focus on the hypothesis that treats ICL as implicit fine-tuning [6].
The underlying insight is that implicit learning in humans is analogous to ICL in neu-
ral models such that both require (implicit) gradient weight update. Therefore, we can
use the IFE as a way to test whether LMs are performing implicit learning: if the IFE
requires implicit learning, then whether a LM displays the IFE speaks to whether it
is performing implicit learning. That is, observing the IFE in a LM suggests that it is
performing implicit learning, which indicates that the ICL mechanism is indeed a form
of implicit learning in the sense of implicit fine-tuning. This approach goes beyond
probing the representations in LMs and inquires one level deeper into the processing
mechanisms of LMs based on existing psycholinguistic theories of human cognition.
This study also clarifies the nature of ICL shared by human sentence processing.

In section 2, we introduce the studies and theories of structural priming for both
humans and neural models, as well as the hypothesized underlying mechanisms of ICL
in LMs. In section 3, we quantify the inverse frequency effect by comparing the target
sentence probabilities primed by different verbs. In section 4, we found that larger
LMs tend to show a stronger IFE, which we hypothesized to correlate with their ICL
capability, a form of implicit fine-tuning.

2 Background and Previous Study

2.1 Structural Priming in Psycholinguistics

Structural priming refers to the phenomenon that speakers tend to reuse recently en-
countered syntactic structures [2]. For example, speakers tend to produce a double
object (DO) structure (e.g. The student sent the professor a letter) rather than a
prepositional dative (PD) structure (e.g. The student sent a letter to the professor)
after encountering a DO sentence (e.g. Alice gave Bob a book). Similar to adapting to
prompts in LMs, structural priming has also been interpreted an adaptation mecha-
nism, where speakers adapt lexical and syntactic predictions to the current context [10].

One important aspect of structural priming is the inverse frequency effect [1, 9,
11]: less preferred syntactic alternatives (measured by the relative frequency in the
speaker’s experience against their counterparts) cause stronger overall priming than
more preferred structures. The gradient degrees of each unique verb’s structural pref-
erence is called verb biases (or alternation biases). For example, since give is biased
towards DO in English, a prime sentence with give in PD structure will cause a greater
priming effect than that prime sentence in DO structure. That is, the strength of PD
priming (i.e. the increase in the probability of a PD target given a PD prime) inversely
correlates with the expectation on a PD prime, as is determined by its verb biases [1].

Two mainstream theories have been proposed to account for structural priming.
Transient activation theory [16] claims that the activation of structural representations
from the prime persists for a short time (in working memory), so the structural infor-
mation has a higher probability of being reactivated on the next relevant opportunity.
The current form of transient activation theory does not account for the IFE because
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it is independent from verb biases and does not involve any error-driven mechanism.
Alternatively, implicit learning theory [5] claims that humans implicitly learn proba-
bilistic information about different structures (including verb biases) from experience
(in the long-term memory) and use such information to predict the form of prime sen-
tences. Crucially, under standard theories of learning, the update performed by the
learner is error-driven, such that a larger update is performed in situations where the
learner’s predictions are farther from the truth. In the context of priming, this would
mean that priming strength is determined by the difference between the learner’s pre-
dictions and the actual prime sentence. Therefore, the implicit learning theory - unlike
transient activation - predicts the IFE. The two theories are not mutually exclusive
and can co-exist to account for priming, stated as the dual mechanism account [19].

2.2 Structural Priming in Neural Language Models

As structural priming has been proposed as a means of probing the abstract mental
representations of structural information in humans [3], previous works have adopted
this paradigm for neural network analysis. It has been shown that LSTMs are capable
of adapting to syntactic structures under the adaptation way of priming [17, 20]: fine-
tuning model weights on prime sentences and testing target sentence probabilities on
the updated model, which is analogous to the implicit learning account of structural
priming. Recently, Sinclair et al. have shown that GPT2 showed robust structural prim-
ing through encoding structural information given in the preceding context (i.e. directly
concatenating target sentences with prime sentences)[18], which does not involve any
weight updates and is analogous to the transient activation account in humans. Other
works have demonstrated crosslingual structural priming in large language models [14],
suggesting that structural priming is robustly detected in LMs.

So far, no study has investigated whether LMs also show the IFE. Given the unique
status of the IFE as it is only predicted by the implicit learning mechanism, the IFE
is a natural case to tease apart whether there exists implicit learning, or in general,
(implicit) weight update in LMs. Under standard approaches, LMs operate via ICL, the
ability to learn new tasks at inference time, using only input-output pair exemplars as
guidance [7]. ICL has been interpreted as performing implicit Bayesian inference [22],
functionally performing gradient descent [21], as a process of meta-optimization and
performing implicit fine-tuning [6]. These hypotheses lead to our analogy between ICL
and implicit learning. On one hand, ICL does not involve any updates to the learner,
which makes it seem more like transient activation. On the other hand, ICL has been
interpreted as performing gradient descent and behaves similarly to explicit fine-tuning,
which would suggest that it could be viewed as a form of implicit learning. In this paper,
we use the IFE to tease apart these possibilities.

3 Current Study

Research Questions and Hypotheses In this study, we investigated the following
research questions: (i) how well are verb biases represented in LMs; (ii) to what extent
do LMs show the IFE; (iii) assuming the distinction between the two accounts of struc-
tural priming, what could we infer about the ICL mechanism across LMs of different
sizes given their behaviors on the IFE, and to what extent could ICL be viewed as a
form of implicit learning.
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Specifically, assuming that only implicit learning could predict the IFE, we hypoth-
esize that the transient activation way of simulating structural priming in LMs will not
elicit the IFE for models without or with weak ICL capability, while larger models with
stronger ICL capability will show the IFE. That is, we proposed that the IFE could be
a way of assessing the degree of ICL capability in LMs of various sizes.

Corpus We adapted the Core Dative Prime-LM Corpus from Sinclair et al.[18] to
create our dataset. We briefly introduce the desired properties of the corpus and refer
the readers to the original paper for details. The dative corpus consists of sentences
in two forms: (i) DO: DPsubj V DPiobj DPdobj (e.g. A girl bought a guy a coffee.); (ii)
PD: DPsubj V DPdobj Prep DPiobj (e.g. A girl bought a coffee for a guy.). The DPs are
simply a determiner with a common noun (120 distinct nouns in total). The corpus
was constructed in the way that controlled for the degree of semantic association and
lexical overlapping between prime and target sentences, and sentences are semantically
plausible as the ditransitive verbs were manually labeled with their verb frames.

Since our goal is to study the IFE, which depends on the verb biases of particular
verbs, we want each pair of prime and target verbs to be equally represented. Thus, for
each of the 22 prime verbs, we sampled 50 target sentences for each of the 21 target verbs
(we excluded cases where prime and target verbs overlap). For each target sentence, we
sampled a prime sentence with no lexical overlapping to form a prime-target pair. Each
prime-target pair yields 4 instances of structural combinations (TPD|PPD, TPD|PDO,
TDO|PPD, TDO|PDO, i.e. target sentence T conditioned on prime P 1), resulting in 92400
prime-target pairs. An example of TPD|PDO is “A doctor brought a chief a plate. The
secretary drew the card for the band.”

Crucially, we also created an alternative dataset of the same size by replacing the
indirect object DP with a pronoun2. This was motivated by a corpus parse3 we did that
showed that the most common indirect object in DO sentences are animate pronouns,
suggesting that animacy is crucial for naturally capturing verb biases, confirming results
reported in [4]. The presence and absence of pronouns lead to different verb biases for
LMs, which affect their IFE behaviors. We will return to this point in discussion.

Language Models We considered a set of Transformer models that have been claimed
to show ICL capabilities to various extents [12]: GPT2 in three of its sizes (small,
medium, large), with 85M, 302M, and 708M number of parameters, respectively. All
versions were loaded from package transformerLens[15]. LLAMA2 in three versions:
7b (5B parameters), 7b-chat (5B parameters), 13b (9.9B parameters). All versions
were loaded from Huggingface. GPT3-base with the davinci-002 version (175B pa-
rameters), accessed via OpenAI API. The models are sorted by size, and correspond-
ingly, by their ICL capabilities, so we predicted a stronger IFE as size increases4.

1 In this paper, we use P for prime sentences and P for probability.
2 Details of the set of pronouns and their relative probabilities are in Appendix A.
3 In order to find the verb biases represented in the training corpus of GPT2 models, we
parsed a fragment (around 160 million tokens) of the OpenWebText corpus with python
package spaCy to get a distribution of the DO vs. PD ratio for each verb. We found that
the verb biases from the corpus are less well-represented in GPT2 models.

4 We also tested LSTMs [8] with the current transient activation mode and we found that
they didn’t show structural priming, although LSTMs did show structural priming in the
implicit learning mode [17, 20].
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Quantifying Verb Biases The verb bias for a specific verb is the likelihood of
producing structureX compared to the alternative structure Y . In human experiments,
baseline verb biases are estimated as the ratio of the number of one structure over the
sum of two structures in natural production settings or corpus searches [23]. Here,
we computed a continuous verb bias for each verb analogously as the ratio of the
probability of one structure over the sum of the probabilities of both structures. The
probability of a sentence s is the sum of probabilities assigned by LMs to each token
wi: P(s) =

∑
i P(wi)

5. This measures how likely it is for the model to see or produce
this sentence. Then, given a set of sentences SV with ditransitive verb V , where each
sentence TX with structure X always has its counterpart TY in the opposite structure,
the X-bias of verb V is the mean normalized probability of sentences in structure X:

bias(V,X) =
1

|SV |
∑

TX∈SV

P(TX)

P(TX) + P(TY )
(1)

Simulating Priming Following Sinclair et al., we simulated structural priming re-
sembling transient activation on the surface: conditioning a target sentence on a prime
sentence through directly concatenating them, separated by a period, without any
weight updates. Following from previous studies [18, 20], the probability of the target
sentence after priming is the sum of probabilities assigned to its tokens: P(TX |PX) =∑

i P(TXi
|PX , TX<i

). Following from standard priming effect, the probability of the
same target sentence TX should be greater after primed by a sentence with the same
structure: P(TX |PX) > P(TX); primed by the opposite structure decreases its proba-
bility: P(TX |PY ) < P(TX).

Predictions on Inverse Frequency Effect Recall that the IFE states that the
priming strength of structure X inversely correlates with the prime verb’s X-bias.
That is, IFE is solely about the effect of the prime verbs, i.e. the degree of deviation
of the target production from baseline it causes. Therefore, for each prime verb V , we
computed the normalized mean target probability primed by this verb over a set of
target sentences:

P̄(TPD|PV
DO) =

1

|SV |
∑

TPD∈SV

P(TPD|PV
DO)

P(TDO|PV
DO) + P(TPD|PV

DO)
(2)

As is shown in Figure. 1, the IFE predicts that for TPD|PDO, as prime verbs’ PD-
biases increase, a DO prime sentence is less expected, resulting in a larger priming
strength towards the DO direction in target production, i.e. a smaller P̄(TPD|PDO)
value. Similarly, as PD-biases increase, a PD prime sentence will result in a smaller
priming strength towards the PD direction in target production, i.e. again a smaller
P̄(TPD|PPD) value. Therefore, when plotting P̄(TPD|PPD) and P̄(TPD|PDO) against
increasing verb biases and fitting a line with linear regression, observing the IFE pre-
dicts negative slopes for both plots. Moreover, standard priming predicts that
P̄(TPD|PPD) should have a higher intercept than P̄(TPD|PDO) since the former in-
creases the probability of TPD while the latter decreases the probability of TPD.

6

5 Whether to take log probabilities does not make a difference here. Log probabilities has a
natural interpretation as the surprisal or perplexity [20], which is less relevant here.

6 The other two conditions, namely TDO|PPD and TDO|PDO, should have exactly the opposite
slopes, and the intercepts should add up to 1 with its counterparts.
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Fig. 1: The IFE predicts a stronger priming effect of a DO prime as PD-bias increases.

4 Results and Analysis

Results For each model, we plotted P̄(TPD|PPD) and P̄(TPD|PDO) against increasing
verb biases and used linear regression to find the pattern of priming strength with
respect to verb biases. We reported the R-squared (R2) coefficient and the root mean
squared error (RMSE) to assess the significance of the fitted lines. We only show one
plot for each of the three types of models and report the full results in Table 1.

Table 1: The slope, intercept, R2, RMSE of the fitted lines for each condition.
size pronoun PDPD slope PDPD intercept PDPD R2 PDPD RMSE DOPD slope DOPD intercept DOPD R2 DOPD RMSE

GPT2-small True 0.011 0.370 0.014 0.020 -0.007 0.278 0.008 0.017
GPT2-small False 0.014 0.746 0.024 0.016 0.006 0.653 0.003 0.019

GPT2-medium True -0.013 0.351 0.015 0.023 -0.026 0.256 0.107 0.016
GPT2-medium False -0.023 0.748 0.067 0.017 -0.035 0.590 0.060 0.027
GPT2-large True 0.011 0.330 0.017 0.019 -0.037 0.241 0.173 0.018
GPT2-large False -0.003 0.698 0.001 0.018 -0.020 0.487 0.026 0.024
LLAMA2-7b True -0.020 0.392 0.073 0.015 -0.086 0.229 0.645 0.013
LLAMA2-7b False -0.026 0.807 0.046 0.019 -0.111 0.627 0.149 0.042

LLAMA2-7b-chat True -0.012 0.413 0.019 0.018 -0.095 0.263 0.587 0.017
LLAMA2-7b-chat False -0.013 0.788 0.007 0.024 -0.102 0.605 0.107 0.044
LLAMA2-13b True -0.059 0.434 0.323 0.018 -0.099 0.256 0.760 0.011
LLAMA2-13b False -0.066 0.859 0.160 0.019 -0.177 0.685 0.224 0.042
davinci-002 True -0.078 0.403 0.570 0.013 -0.078 0.223 0.662 0.011
davinci-002 False -0.064 0.851 0.172 0.020 -0.145 0.632 0.257 0.035

For all models across all conditions, the TPD|PPD intercept is greater than the
TPD|PDO intercept, showing the standard structural priming effect, which is consistent
with our prediction. The RMSE score for all conditions are less than 0.04, suggesting
a significant predictability of the fitted lines to the data points. For the IFE, we found
that all three sizes of GPT2 failed to show the IFE, as the slopes are either positive
or close to zero. This suggests that in GPT2, the priming strength is not correlated
with the verb biases under current metric. All three LLAMA2 models showed the two
negative slopes, which is consistent with our prediction. However, only in the Pronoun
TPD|PDO condition are the R2 coefficients constantly greater than 0.5 across the three
models7, suggesting that the negative slopes themselves are not well accounted for

7 Given no consensus on standard R2 score thresholds, we picked this criterion by default.
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Fig. 2: Various degrees of the inverse frequency effect across models of different sizes in
the With Pronoun condition.

given the distribution of prime verb’s IFE scores. Finally, for GPT3, both TPD|PPD

and TPD|PDO conditions with Pronoun have R2 coefficient greater than 0.5, while
neither holds in the NoPronoun condition.

Therefore, besides confirming previous results that LMs show structural priming
effect, the current results suggest that in general, larger models tend to show stronger
IFE, which analogously correlates with their ICL capability. Given the currently ob-
served pattern, we further predict larger models such as GPT4 should show a stronger
and more significant IFE, which is left for future study to verify. In the section below,
we discuss the observed disparity between the Pronoun versus NoPronoun conditions.

(a) GPT3 Verb Biases without Pronoun (b) GPT3 Verb Biases with Pronoun

Fig. 3: Comparison of PD biases with and without pronoun for GPT3, where higher
above the red line means a larger PD bias, below the red line means a DO bias.

Pronoun versus NoPronoun The fact that the observed patterns fit better with
our predictions in the Pronoun condition than NoPronoun condition remains curious.
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The main difference lies in the default verb biases: as is shown in Figure. 3, the GPT3
model shows an overwhelming bias towards PD without pronoun but a reverse pattern
favoring DO with pronoun. This pattern holds across all models and is consistent with
our corpus parse result, which suggests that the most common indirect object DP in the
DO sentences are animate pronoun, causing the model to assign a higher probability of
pronoun sentences. However, it still remains puzzling why and how differences in verb
biases could lead to different significance of the IFE behavior in the two conditions.

Discussion, Future Directions, and Conclusion Our preliminary results show
that under the superficially transient activation way of simulating structural priming,
LMs do show the IFE to various extent. The larger the model is, the stronger IFE it
shows. Since the IFE is predicted only by the implicit learning mechanism, we hypoth-
esize that larger LMs are more capable of implicit learning through their in-context
learning capability, which is functionally performing implicit fine-tuning.

To better varify our reasoning, we propose a future direction of using the explicit
implicit learning way [20] (i.e. fine-tuning on prime examples and use the updated
model for target sentences) of doing structural priming on the GPT2 models and see
whether even the relatively small GPT2 models show the IFE. If this is true, then
it would suggest that the IFE is indeed predicted only by implicit learning, and that
GPT2 models alone do not possess strong ICL capability in order to show the IFE.
Furthermore, another future direction is to train diagnostic classifiers on the internal
representations (i.e. residual streams or attention scores) of the GPT2 models across
layers in order to localize the structural representations and how they influence logit
predictions on the target sentences, which may help explaining the difference between
the presence and absence of pronouns.

In sum, by drawing the connection between the implicit learning mechanism in
human cognition and the implicit fine-tuning nature of in-context learning in language
models, we suggests that implicit learning is a shared processing strategy between
humans and language models. Our study offers a new way of not only probing learned
representations, but also the processing mechanisms of neural language models. 8
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