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7



Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they 
have recently encountered during production.

E.g. [Bock 1986]

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for 
ditransitive predicates.

8



Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they 
have recently encountered during production.

E.g. [Bock 1986]

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for 
ditransitive predicates.

● DO: Alice sent Bob a letter.
● PD: Alice sent a letter to Bob.
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Structural Priming Effect in Experimental Settings

E.g. [Bock 1986, Bernolet & Hartsuiker 2010]
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Structural Priming Effect in Experimental Settings

Alice sent Bob a letter. [DO]

E.g. [Bock 1986, Bernolet & Hartsuiker 2010]

The dancer paid the cook 30 euros. [DO]
The dancer paid 30 euros to the cook. [PD]

PRIME

TARGET
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Lexical Boost Effect 

Alice gave Bob a book.

E.g. [Pickering & Branigan 1998]

Carl gave Danis a letter.

Carl showed Danis a letter. 
PRIME

TARGET

Does lexical selection play any role?

Lexical Boost Effect: structural priming effect is stronger when the word that 
heads the primed structures is repeated between prime and target sentences.
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Inverse Frequency Effect

E.g. [Jaeger & Snider 2007]

Alice showed Bob a letter. [DO]

Alice showed a letter to Bob. [PD]

PRIME

Do verb biases play any role?

Inverse Frequency Effect: the less preferred syntactic structures cause 
stronger priming effect than the more preferred structures.

DO
PD

Verb Bias:
show is biased 
towards PD
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Inverse Frequency Effect

Carl gave Danis a book. [DO]

Carl gave a book to Danis. [PD]

E.g. [Jaeger & Snider 2007]

Alice showed Bob a letter. [DO]

Alice showed a letter to Bob. [PD]

PRIME TARGET

Do verb biases play any role?

Inverse Frequency Effect: the less preferred syntactic structures cause 
stronger priming effect than the more preferred structures.

DO
PD

Verb Bias:
show is biased 
towards PD
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Interim Summary
● Structural Priming Effect (StrucPriming)
● Lexical Boost Effect (LBE)
● Inverse Frequency Effect (IFE)
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Interim Summary
● Structural Priming Effect (StrucPriming)
● Lexical Boost Effect (LBE)
● Inverse Frequency Effect (IFE)

Next: computational modeling
● Gradient Symbolic Computation (GSC)
● Parallelism in Producing Syntax (PIPS)

24



Gradient Symbolic Computation Framework

A GSC Parser: a continuous-state, continuous-time stochastic 
dynamical-system model of symbolic processing.

● Motivation: integrating the discrete (symbolic) and continuous (gradient) 
aspects of language processing that happen at different levels of the mind.

[Cho & Smolensky 2018, 2020, Smolensky & Hale 2006]
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Gradient Symbolic Computation Framework

A GSC Parser: a continuous-state, continuous-time stochastic dynamical-system 
model of symbolic processing.

● Motivation: integrating the discrete (symbolic) and continuous (gradient) aspects 
of language processing that happen at different levels of the mind.

[Cho & Smolensky 2018, 2020, Smolensky & Hale 2006]

Core Properties: 

● Representing discrete symbolic structures in a continuous space.
● Maintaining multiple locally-coherent structures simultaneously at each timestep; 

gradually converging to a final, discrete structure / hypothesis.
● Implementing Harmonic Grammar to measure well-formedness of structures.
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Tensor Product Representation

Orthogonal vector representations of the 
followings:

● Roles: positional, structural information;
● Fillers: the values that are filled into the roles;
● Binding: outer/tensor product of roles and 

fillers;

[Smolensky 1990]
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PIPS: an implementation of GSC

[Brehm et al. 2022, Bock & Miller 1991]

Motivation: modeling sentence production with the GSC properties, 
with a case study in modeling agreement attraction.

30



PIPS: an implementation of GSC

[Brehm et al. 2022, Bock & Miller 1991]

Motivation: modeling sentence production with the GSC properties, 
with a case study in modeling agreement attraction.

31

PREAMBLE: The key to the cabinets… PREAMBLE: The key to the cabinets… 



PIPS: an implementation of GSC

[Brehm et al. 2022, Bock & Miller 1991]

Motivation: modeling sentence production with the GSC properties, 
with a case study in modeling agreement attraction.

32

PREAMBLE: The key to the cabinets… 

Subject                                                   Intervener

PREAMBLE: The key to the cabinets… 



PIPS: an implementation of GSC

[Brehm et al. 2022, Bock & Miller 1991]

Motivation: modeling sentence production with the GSC properties, 
with a case study in modeling agreement attraction.
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PREAMBLE: The key to the cabinets… 

Subject                                                   Intervener

PREAMBLE: The key to the cabinets… 

Method: representing sentence production as a Preamble Completion Task
● Representing preambles in memory as pre-activations of bindings;
● Dynamically and stochastically modeling the transient activations of a 

blend of alternative structures (which lead to errors in production) – 
also for structural priming.



Interim Summary
● Gradient Symbolic Computation
● Parallelism in Producing Syntax

34



Interim Summary
● Gradient Symbolic Computation
● Parallelism in Producing Syntax

Next: current study
● How to model priming?
● How to quantify Structural Priming, LBE, and IFE?
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Training: Fillers and Verb Biases

[Pickering & Branigan 1998, Yi et al. 2019]
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Training: Fillers and Verb Biases

[Pickering & Branigan 1998, Yi et al. 2019]

Nine ditransitive verbs with their 
absolute frequencies of DO vs. PD:
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Training: Fillers and Verb Biases

Abstracting away Noun Phrases:

● NPs,NPi,NPd are the three noun phrases;
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Training: Fillers and Verb Biases

Abstracting away Noun Phrases:

● NPs,NPi,NPd are the three noun phrases;

[Pickering & Branigan 1998, Yi et al. 2019]

Nine ditransitive verbs with their 
absolute frequencies of DO vs. PD:

39

Two types of grammatical sentences:

● DO: NPs _VERB_ NPi NPd
● PD: NPs _VERB_ NPd to NPi



Training: Three PCFGs
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Training: Three PCFGs

ABS NORM
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Training: Three PCFGs

ABS NORM BASE
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Training: Three PCFGs

ABS NORM BASE

Training: minimizing KL-divergence between production 
distribution and PCFG distribution.
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Priming

Preamble Activation: raise the activation value of the bindings to 0.5;

Priming: raise the activation value of the bindings to {0.05, 0.1, 0.2};
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Priming

Preamble Activation: raise the activation value of the bindings to 0.5;

Priming: raise the activation value of the bindings to {0.05, 0.1, 0.2};

Priming Modes:

Structure Words Whole
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Simulation Procedure

For each model:

1. Prime the model with a verb+structure 
combination. [18 conditions in total]

Baseline Production for Comparison: run the 
model without priming and obtain the proportions 
of the 18 sentences.
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Sample production trials for preamble NPs offer. 

2. Activate the preamble: NPs VERB. 

3. Run the model for 50 production trials as 
target productions.

4. Obtain the proportion of production of the 
18 grammatical sentences + Others.



Quantifying Priming Effects

Target Verb: the verb given in the preamble that should be produced.

We focus on the portion of produced sentences with correct target verbs.
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Quantifying Priming Effects

Target Verb: the verb given in the preamble that should be produced.

We focus on the portion of produced sentences with correct target verbs.

DO Ratio:
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Quantifying Priming Effects

Target Verb: the verb given in the preamble that should be produced.

We focus on the portion of produced sentences with correct target verbs.

DO Ratio:

Deviation from Baseline:
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Quantifying Priming Effects, cont.
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Quantifying Priming Effects, cont.
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Interim Summary
● Trained 3 models: ABS, NORM, BASE
● Priming means activating corresponding bindings

○ Priming weights: {0.05, 0.1, 0.2}
○ Priming modes: {structure, words, whole}

● Quantifying effects w.r.t. deviations from baseline.
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Interim Summary
● Trained 3 models: ABS, NORM, BASE
● Priming means activating corresponding bindings

○ Priming weights: {0.05, 0.1, 0.2}
○ Priming modes: {structure, words, whole}

● Quantifying effects w.r.t. deviations from baseline.

Next: results and discussion
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Results: priming weights and modes
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Results: priming weights and modes

● Greater priming 
weights lead to 
stronger priming 
effect.
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Results: priming weights and modes

● Greater priming 
weights lead to 
stronger priming 
effect.

● Priming Modes: 
structure < words 
<(=) whole;
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Results: comparing the three effects
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Results: comparing the three effects

* Priming weight = 0.2

● All three models 
captured LBE;

● Prime by structures 
does not produce LBE;

● For IFE, comparing 
ABS and NORM 
models (BASE doesn’t 
encode verb bias);

● Only the NORM 
model captures IFE;
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Conclusions & Implications
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Conclusions & Implications

● The PIPS model is capable of qualitatively modeling human results on structural 
primings;
○ In general, the GSC framework works on modeling the incremental processes of 

sentence production.
○ It remains a question of how to quantitatively align simulation results with 

human results.
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Conclusions & Implications

● The PIPS model is capable of qualitatively modeling human results on structural 
primings;
○ In general, the GSC framework works on modeling the incremental processes of 

sentence production.
○ It remains a question of how to quantitatively align simulation results with 

human results.

● Why only the NORM model captures IFE remains a problem for further exploration.
○ The NORM model learns the PCFG distribution better than the ABS model;
○ Both models acquired most of the verb biases;
○ Postulation: PIPS may be sensitive to target distributions and/or hyperparameters.
○ Connection with the role of Type (NORM) vs. Token (ABS) Frequency (e.g. 

[Bybee & Hopper 2001]);
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Future Work

Improving Current Simulations

● Controlling the total amount of priming activation among the 3 priming modes;
● Computing the IFE score by weighting the verb biases from individual verbs;

75



Future Work

Improving Current Simulations
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Deeper into the Theories of Structural Priming

● Understanding the relationship between the current PIPS model and theories of 
structural priming: for instances, transient activation account (e.g. [Pickering & 
Branigan 1998]), implicit learning account (e.g. [Chang et al. 2002, 2006]);
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Future Work

Improving Current Simulations

● Controlling the total amount of priming activation among the 3 priming modes;
● Computing the IFE score by weighting the verb biases from individual verbs;

Deeper into the Theories of Structural Priming

● Understanding the relationship between the current PIPS model and theories of 
structural priming: for instances, transient activation account (e.g. [Pickering & 
Branigan 1998]), implicit learning account (e.g. [Chang et al. 2002, 2006]);

Extending the Simulation Domain

● Simulating other structural priming phenomena, such as filler-gap dependency 
(e.g. [Momma 2022]);
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Tensor Product Representation: Extra

Orthogonal vector representations of the followings:

● Representation of a syntactic tree = summing over all bindings 
representing each node;

● Decomposability: linearly independence avoids the superposition 
catastrophe:

[Smolensky 1990]

81



Tensor Product Representation: Extra

Orthogonal vector representations of the followings:

● Representation of a syntactic tree = summing over all bindings 
representing each node;

● Decomposability: linearly independence avoids the superposition 
catastrophe:

[Smolensky 1990]

82



Brick-Role Representation

TPR Implementation: Brick-Role Representation

[Cho 2020, Brehm et al. 2022]
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Optimizing Over Constraints

[Smolensky & Hale 2006, Cho et al. 2018, 2020]
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Optimizing Over Constraints

Non-grammatical Constraints:

● Competition Constraint: 
avoiding bindings of multiple fillers 
to the same role; 

● Baseline Constraint: avoiding 
extreme states;

● Discreteness Constraint: 
encouraging activation values to be 
close to 0 or 1 as time goes;
○ Commitment policy q

[Smolensky & Hale 2006, Cho et al. 2018, 2020]
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Optimizing Over Constraints

Non-grammatical Constraints:

● Competition Constraint: 
avoiding bindings of multiple fillers 
to the same role; 

● Baseline Constraint: avoiding 
extreme states;

● Discreteness Constraint: 
encouraging activation values to be 
close to 0 or 1 as time goes;
○ Commitment policy q

[Smolensky & Hale 2006, Cho et al. 2018, 2020]

Grammatical Constraints: 

● Harmonic Grammar
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PCFG for the NORM Model
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