Simulating Structural Priming Effects with PIPS

Zhenghao "Herbert" Zhou, Robert Frank Yale University

SCiL Presentation Jun 15, 2023

Simulating Structural Priming Effects with PIPS

Zhenghao "Herbert" Zhou, Robert Frank Yale University

SCiL Presentation Jun 15, 2023

Parallelism in Producing Syntax [Brehm et al. 2022]

Structural Priming

- Structural priming effect;
- Lexical boost effect (LBE);
- Inverse frequency effect (IFE);

Structural Priming

Computational Modeling

- Structural priming effect;
- Lexical boost effect (LBE);
- Inverse frequency effect (IFE);

The PIPS Model

The Gradient Symbolic Computation (GSC) framework

Structural Priming	Computational Modeling	Current Study
• Structural priming effect;	The PIPS ModelThe Gradient	• How to model the priming

- Lexical boost effect (LBE);
- Inverse frequency effect (IFE);

- Symbolic Computation (GSC) framework
- procedure?
- How to quantify the three priming effects?

Structural Priming	Computational Modeling	Current Study	Results & Discussion
 Structural priming effect; Lexical boost effect (LBE); Inverse frequency effect (IFE); 	 The PIPS Model The Gradient Symbolic Computation (GSC) framework 	 How to model the priming procedure? How to quantify the three priming effects? 	• PIPS is capable of qualitatively capturing the structural priming effects.

Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they have recently encountered during production.

Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they have recently encountered during production.

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for ditransitive predicates.

Structural Priming

Structural Priming: speakers tend to reuse the syntactic structures they have recently encountered during production.

Our focus: Double Object (DO) vs. Prepositional Dative (PD) for ditransitive predicates.

- DO: Alice sent Bob a letter.
- PD: Alice sent a letter to Bob.

E.g. [Bock 1986]

E.g. [Bock 1986, Bernolet & Hartsuiker 2010]

Alice sent Bob a letter. [DO] -<u>.00</u>

PRIME

Production Task with <u>Preamble</u> <u>Completion</u> <u>Paradigm</u>

E.g. [Bock 1986, Bernolet & Hartsuiker 2010]

E.g. [Bock 1986, Bernolet & Hartsuiker 2010]

Does lexical selection play any role?

Does lexical selection play any role?

Lexical Boost Effect: structural priming effect is stronger when the word that heads the primed structures is repeated between prime and target sentences.

Does lexical selection play any role?

Lexical Boost Effect: structural priming effect is stronger when the word that heads the primed structures is repeated between prime and target sentences.

Alice <u>gave</u> Bob a book.

TARGET

Does lexical selection play any role?

Lexical Boost Effect: structural priming effect is stronger when the word that heads the primed structures is repeated between prime and target sentences.

Carl <u>gave</u> Danis a letter.

PRIME

Carl showed Danis a letter.

Alice <u>gave</u> Bob a book.

TARGET

Do verb biases play any role?

Verb Bias: show is biased towards PD

Do verb biases play any role?

Inverse Frequency Effect: the less preferred syntactic structures cause stronger priming effect than the more preferred structures.

Do verb biases play any role?

Inverse Frequency Effect: the less preferred syntactic structures cause stronger priming effect than the more preferred structures.

Alice showed Bob a letter. [DO]

Alice showed a letter to Bob. [PD]

PRIME

Do verb biases play any role?

Inverse Frequency Effect: the less preferred syntactic structures cause stronger priming effect than the more preferred structures.

Alice showed Bob a letter. [DO]

Alice showed a letter to Bob. [PD]

PRIME

Carl gave Danis a book. [DO]

Carl gave a book to Danis. [PD] TARGET

Interim Summary

- Structural Priming Effect (StrucPriming)
- Lexical Boost Effect (LBE)
- Inverse Frequency Effect (IFE)

Interim Summary

- Structural Priming Effect (StrucPriming)
- Lexical Boost Effect (LBE)
- Inverse Frequency Effect (IFE)

Next: computational modeling

- Gradient Symbolic Computation (GSC)
- Parallelism in Producing Syntax (PIPS)

Gradient Symbolic Computation Framework

A GSC Parser: a continuous-state, continuous-time stochastic dynamical-system model of symbolic processing.

• Motivation: integrating the *discrete* (symbolic) and *continuous* (gradient) aspects of language processing that happen at different levels of the mind.

[Cho & Smolensky 2018, 2020, Smolensky & Hale 2006]

Gradient Symbolic Computation Framework

A GSC Parser: a continuous-state, continuous-time stochastic dynamical-system model of symbolic processing.

• Motivation: integrating the *discrete* (symbolic) and *continuous* (gradient) aspects of language processing that happen at different levels of the mind.

Core Properties:

- Representing discrete symbolic structures in a continuous space.
- Maintaining multiple locally-coherent structures simultaneously at each timestep; gradually converging to a final, discrete structure / hypothesis.
- Implementing Harmonic Grammar to measure well-formedness of structures.

[Cho & Smolensky 2018, 2020, Smolensky & Hale 2006]

Tensor Product Representation

Orthogonal vector representations of the followings:

- **Roles**: positional, structural information;
- **Fillers**: the values that are filled into the roles;
- **Binding**: outer/tensor product of roles and fillers;

[Smolensky 1990]

Tensor Product Representation

Orthogonal vector representations of the followings:

- **Roles**: positional, structural information;
- **Fillers**: the values that are filled into the roles;
- **Binding**: outer/tensor product of roles and fillers;

[Smolensky 1990]

Tensor Product Representation

Orthogonal vector representations of the followings:

- **Roles**: positional, structural information;
- **Fillers**: the values that are filled into the roles;
- **Binding**: outer/tensor product of roles and fillers;

 $f_{
m S} \otimes r_{
m root} + f_{
m NP} \otimes r_0 + f_{
m VP} \otimes r_1 + f_{
m V} \otimes r_{10} + f_{
m PP} \otimes r_{11}$

[Smolensky 1990]

Motivation: modeling *sentence production* with the GSC properties, with a case study in modeling *agreement attraction*.

Motivation: modeling *sentence production* with the GSC properties, with a case study in modeling *agreement attraction*.

PREAMBLE: *The key to the cabinets...*

[Brehm et al. 2022, Bock & Miller 1991]

Motivation: modeling *sentence production* with the GSC properties, with a case study in modeling *agreement attraction*.

PREAMBLE: *The key* to *the cabinets*... Subject Intervener

[Brehm et al. 2022, Bock & Miller 1991]

Motivation: modeling *sentence production* with the GSC properties, with a case study in modeling *agreement attraction*.

Method: representing sentence production as a Preamble Completion Task

- Representing preambles in memory as pre-activations of bindings;
- Dynamically and stochastically modeling the transient activations of a blend of alternative structures (which lead to errors in production) also for structural priming. [Brehm et al. 2022, Bock & Miller 1991]

Interim Summary

- Gradient Symbolic Computation
- Parallelism in Producing Syntax

Interim Summary

- Gradient Symbolic Computation
- Parallelism in Producing Syntax

Next: current study

- How to model priming?
- How to quantify Structural Priming, LBE, and IFE?

Training: Fillers and Verb Biases

[Pickering & Branigan 1998, Yi et al. 2019]
Training: Fillers and Verb Biases

Nine ditransitive verbs with their absolute frequencies of DO vs. PD:

Verb	DO Frequency	PD Frequency
give	15311	8402
show	502	571
send	658	3134
lend	177	677
hand	308	659
loan	12	11
offer	752	1203
sell	190	1288
post	1	55

[Pickering & Branigan 1998, Yi et al. 2019]

Training: Fillers and Verb Biases

Nine ditransitive verbs with their absolute frequencies of DO vs. PD:

Abstracting away Noun Phrases:

• NP_s, NP_i, NP_d are the three noun phrases;

Verb	DO Frequency	PD Frequency
give	15311	8402
show	502	571
send	658	3134
lend	177	677
hand	308	659
loan	12	11
offer	752	1203
sell	190	1288
post	1	55

[Pickering & Branigan 1998, Yi et al. 2019]

Training: Fillers and Verb Biases

Nine ditransitive verbs with their absolute frequencies of DO vs. PD:

Abstracting away Noun Phrases:

• NP_s, NP_i, NP_d are the three noun phrases;

Two types of grammatical sentences:

- **DO:** NP_s _VERB_ NP_i NP_d
- **PD:** NP_s _VERB_ NP_d to NP_i

Verb	DO Frequency	PD Frequency
give	15311	8402
show	502	571
send	658	3134
lend	177	677
hand	308	659
loan	12	11
offer	752	1203
sell	190	1288
post	1	55

[Pickering & Branigan 1998, Yi et al. 2019]

ABS

ABS

NORM

Structure

DO PD

ABS

NORM

BASE

ABS

NORM

BASE

Training: minimizing KL-divergence between production distribution and PCFG distribution.

Preamble Activation: raise the activation value of the bindings to 0.5;
Priming: raise the activation value of the bindings to {0.05, 0.1, 0.2};

Preamble Activation: raise the activation value of the bindings to 0.5;Priming: raise the activation value of the bindings to {0.05, 0.1, 0.2};

Priming Modes:

Structure

Preamble Activation: raise the activation value of the bindings to 0.5;Priming: raise the activation value of the bindings to {0.05, 0.1, 0.2};

Priming Modes:

Structure

Words

NPi

Preamble Activation: raise the activation value of the bindings to 0.5;Priming: raise the activation value of the bindings to {0.05, 0.1, 0.2};

Priming Modes:

For each model:

1. <u>Prime</u> the model with a verb+structure combination. [18 conditions in total]

For each model:

- 1. <u>Prime</u> the model with a verb+structure combination. [18 conditions in total]
- 2. Activate the preamble: NP_S VERB.

For each model:

- 1. <u>Prime</u> the model with a verb+structure combination. [18 conditions in total]
- 2. Activate the preamble: NP_s VERB.
- 3. Run the model for 50 production trials as <u>target</u> productions.

For each model:

- 1. <u>Prime</u> the model with a verb+structure combination. [18 conditions in total]
- 2. Activate the preamble: NP_s VERB.
- 3. Run the model for 50 production trials as <u>target</u> productions.
- 4. Obtain the proportion of production of the18 grammatical sentences + *Others*.

Sample production trials for preamble NP_s offer.

For each model:

- 1. <u>Prime</u> the model with a verb+structure combination. [18 conditions in total]
- 2. Activate the preamble: NP_s VERB.
- 3. Run the model for 50 production trials as <u>target</u> productions.
- 4. Obtain the proportion of production of the18 grammatical sentences + *Others*.

Baseline Production for Comparison: run the model without priming and obtain the proportions of the 18 sentences.

Quantifying Priming Effects

Target Verb: the verb given in the preamble that should be produced. We focus on the portion of produced sentences with correct target verbs.

Quantifying Priming Effects

Target Verb: the verb given in the preamble that should be produced. We focus on the portion of produced sentences with correct target verbs.

DO Ratio:
$$\operatorname{Ratio}_v(\operatorname{DO}) = \frac{\#\operatorname{DO}_v}{\#\operatorname{DO}_v + \#\operatorname{PD}_v}$$

Quantifying Priming Effects

Target Verb: the verb given in the preamble that should be produced. We focus on the portion of produced sentences with correct target verbs.

DO Ratio:
$$\operatorname{Ratio}_{v}(\operatorname{DO}) = \frac{\#\operatorname{DO}_{v}}{\#\operatorname{DO}_{v} + \#\operatorname{PD}_{v}}$$

Deviation from Baseline:

 $\operatorname{Dev}_v^{v'}(\operatorname{DO}) = \operatorname{Ratio}_v(\operatorname{DO})_{\operatorname{primed by} v'} - \operatorname{Ratio}_v(\operatorname{DO})_{\operatorname{unprimed}}$

Quantifying Priming Effects, cont.

$ext{StrucPriming} \propto \sum_{v \in \mathcal{V}} \sum_{s \in \{ ext{DO, PD}\}} ext{Dev}_v(ext{s})$

Quantifying Priming Effects, cont.

$$ext{StrucPriming} \propto \sum_{v \in \mathcal{V}} \sum_{s \in \{ ext{DO, PD}\}} ext{Dev}_v(ext{s})$$

$ext{LBE} \propto \sum_{v,v' \in \mathcal{V}} \sum_{s \in \{ ext{DO, PD}\}} [ext{Dev}_v^v(ext{s}) - ext{Dev}_v^{v'}(ext{s})]$

Quantifying Priming Effects, cont.

$$ext{StrucPriming} \propto \sum_{v \in \mathcal{V}} \sum_{s \in \{ ext{DO, PD}\}} ext{Dev}_v(ext{s})$$

$$ext{LBE} \propto \sum_{v,v' \in \mathcal{V}} \sum_{s \in \{ ext{DO, PD}\}} [ext{Dev}_v^v(ext{s}) - ext{Dev}_v^{v'}(ext{s})]$$

$$ext{IFE} \propto \sum_{v \in \mathcal{V}} \sum_{v' \in \mathcal{V}_{ ext{PD}}} [ext{Dev}_v^{v'}(ext{DO}) - ext{Dev}_v^{v'}(ext{PD})]$$

Interim Summary

- Trained 3 models: ABS, NORM, BASE
- Priming means activating corresponding bindings
 Priming weights: {0.05, 0.1, 0.2}
 - Priming modes: {structure, words, whole}
- Quantifying effects w.r.t. deviations from baseline.

Interim Summary

- Trained 3 models: ABS, NORM, BASE
- Priming means activating corresponding bindings
 Priming weights: {0.05, 0.1, 0.2}
 - Priming modes: {structure, words, whole}
- Quantifying effects w.r.t. deviations from baseline.

Next: results and discussion

Results: priming weights and modes

Results: priming weights and modes

• Greater priming weights lead to stronger priming effect.

Results: priming weights and modes

- Greater priming weights lead to stronger priming effect.
- Priming Modes: structure < words
 <(=) whole;

0.39

Whole

NORM

ABS

66

IFE

0.3

0.02

0.39

Whole

NORM

ABS

* Priming weight = 0.2

0.06

0.05

0.1

* Priming weight = 0.2

All three models captured LBE;

- * Priming weight = 0.2
 - All three models captured LBE;
 - Prime by structures does not produce LBE;

0.06

0.05

0.1

- * Priming weight = 0.2
 - All three models captured LBE;
 - Prime by structures does not produce LBE;
 - For IFE, comparing ABS and NORM models (BASE doesn't encode verb bias):

0.1

* Priming weight = 0.2

- All three models captured LBE;
- Prime by structures does not produce LBE;
- For IFE, comparing ABS and NORM models (BASE doesn't encode verb bias);
- Only the **NORM** model captures IFE;

Conclusions & Implications
Conclusions & Implications

- The PIPS model is capable of qualitatively modeling human results on structural primings;
 - In general, the GSC framework works on modeling the incremental processes of sentence production.
 - It remains a question of how to quantitatively align simulation results with human results.

Conclusions & Implications

- The PIPS model is capable of qualitatively modeling human results on structural primings;
 - In general, the GSC framework works on modeling the incremental processes of sentence production.
 - It remains a question of how to quantitatively align simulation results with human results.
- Why only the **NORM** model captures IFE remains a problem for further exploration.
 - The **NORM** model learns the PCFG distribution better than the **ABS** model;
 - Both models acquired most of the verb biases;
 - Postulation: PIPS may be sensitive to target distributions and/or hyperparameters.
 - Connection with the role of Type (NORM) vs. Token (ABS) Frequency (e.g. [Bybee & Hopper 2001]);

Future Work

Improving Current Simulations

- Controlling the total amount of priming activation among the 3 priming modes;
- Computing the IFE score by weighting the verb biases from individual verbs;

Future Work

Improving Current Simulations

- Controlling the total amount of priming activation among the 3 priming modes;
- Computing the IFE score by weighting the verb biases from individual verbs;

Deeper into the Theories of Structural Priming

• Understanding the relationship between the current PIPS model and theories of structural priming: for instances, *transient activation account* (e.g. [Pickering & Branigan 1998]), *implicit learning account* (e.g. [Chang et al. 2002, 2006]);

Future Work

Improving Current Simulations

- Controlling the total amount of priming activation among the 3 priming modes;
- Computing the IFE score by weighting the verb biases from individual verbs;

Deeper into the Theories of Structural Priming

• Understanding the relationship between the current PIPS model and theories of structural priming: for instances, *transient activation account* (e.g. [Pickering & Branigan 1998]), *implicit learning account* (e.g. [Chang et al. 2002, 2006]);

Extending the Simulation Domain

• Simulating other structural priming phenomena, such as filler-gap dependency (e.g. [Momma 2022]);

Reference

- Sarah Bernolet and Robert J. Hartsuiker. 2010. Does verb bias modulate syntactic priming? *Cognition*, 114(3):455–461.
- J. Kathryn Bock. 1986. Syntactic persistence in language production. *Cognitive Psychology*, 18(3):355–387.
- Kathryn Bock and Carol A Miller. 1991. Broken agreement. *Cognitive Psychology*, 23(1):45–93.
- Laurel Brehm, Pyeong Whan Cho, Paul Smolensky, and Matthew A. Goldrick. 2022. PIPS: A Parallel Planning Model of Sentence Production. *Cognitive Science*, 46(2):e13079.
- Pyeong Whan Cho, Matthew Goldrick, Richard L. Lewis, and Paul Smolensky. 2018. Dynamic encoding of structural uncertainty in gradient symbols. In *Proceedings of the 8th Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2018)*, pages 19–28, Salt Lake City, Utah. Association for Computational Linguistics.
- Pyeong Whan Cho, Matthew Goldrick, and Paul Smolensky. 2020. Parallel parsing in a Gradient Symbolic Computation parser.
- John Hale and Paul Smolensky. 2006. Harmonic gram- mars and harmonic parsers for formal languages. *Smolensky and Legendre*, pages 393–416.
- T. Florian Jaeger and Neal Snider. 2007. Implicit Learning and Syntactic Persistence: Surprisal and Cumulativity. *University of Rochester Working Papers in the Language Sciences*, 3:26–44.
- Martin J. Pickering and Holly P. Branigan. 1998. The representation of verbs: Evidence from syntactic priming in language production. *Journal of Memory and Language*, 39(4):633–651.
- Eunkyung Yi, Jean-Pierre Koenig, and Douglas Roland. 2019. Semantic similarity to high-frequency verbs affects syntactic frame selection. *Cognitive Linguistics*, 30(3):601–628.

Thanks for Listening!

Q&A Session

Tensor Product Representation: Extra

Orthogonal vector representations of the followings:

- Representation of a syntactic tree = summing over all bindings representing each node;
- **Decomposability**: linearly independence avoids the superposition catastrophe:

[Smolensky 1990]

Tensor Product Representation: Extra

Orthogonal vector representations of the followings:

- Representation of a syntactic tree = summing over all bindings representing each node;
- **Decomposability**: linearly independence avoids the superposition catastrophe:

$$f_1+f_2=f_2+f_1$$

 $f_1\otimes r_1+f_2\otimes r_2
eq f_2\otimes r_1+f_1\otimes r_2$

[Smolensky 1990]

Brick-Role Representation

TPR Implementation: Brick-Role Representation

[Cho 2020, Brehm et al. 2022]

Optimizing Over Constraints

[Smolensky & Hale 2006, Cho et al. 2018, 2020]

Optimizing Over Constraints

Non-grammatical Constraints:

- **Competition Constraint**: avoiding bindings of multiple fillers to the same role;
- **Baseline Constraint**: avoiding extreme states;
- **Discreteness Constraint**: encouraging activation values to be close to 0 or 1 as time goes;
 - \circ Commitment policy *q*

[Smolensky & Hale 2006, Cho et al. 2018, 2020]

Optimizing Over Constraints

Non-grammatical Constraints:

- **Competition Constraint**: avoiding bindings of multiple fillers to the same role;
- **Baseline Constraint**: avoiding extreme states;
- **Discreteness Constraint**: encouraging activation values to be close to 0 or 1 as time goes;
 - \circ Commitment policy q

Grammatical Constraints:

• Harmonic Grammar

[Smolensky & Hale 2006, Cho et al. 2018, 2020]

PCFG for the NORM Model

 $1 S \rightarrow NPs VP$ $1 \text{ XP} \rightarrow \text{NPi NPd}$ 1 YP -> NPd PP $1 PP \rightarrow P NPi$ 0.05848089468779124 VP -> show XP 0.06651910531220875 VP -> show YP 0.021690400843881855 VP -> send XP 0.10330959915611815 VP -> send YP 0.025907494145199064 VP -> lend XP 0.09909250585480094 VP -> lend YP 0.03981385729058945 VP -> hand XP 0.08518614270941055 VP -> hand YP 0.06521739130434782 VP -> loan XP 0.059782608695652176 VP -> loan YP 0.04808184143222506 VP -> offer XP 0.07691815856777494 VP -> offer YP 0.016069012178619755 VP -> sell XP 0.10893098782138025 VP -> sell YP 0.002232142857142857 VP -> post XP 0.12276785714285714 VP -> post YP