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Abstract

Large Language Models (LLMs) have demonstrated impressive abilities in symbol
processing through in-context learning (ICL). This success flies in the face of decades of
predictions that artificial neural networks cannot master abstract symbol manipulation. We
seek to understand the mechanisms that can enable robust symbol processing in transformer
networks, illuminating both the unanticipated success, and the significant limitations, of
transformers in symbol processing. Borrowing insights from symbolic AI on the power of
Production System architectures, we develop a high-level language, PSL, that allows us to
write symbolic programs to do complex, abstract symbol processing, and create compilers
that precisely implement PSL programs in transformer networks which are, by construction,
100% mechanistically interpretable. We demonstrate that PSL is Turing Universal, so the
work can inform the understanding of transformer ICL in general. The type of transformer
architecture that we compile from PSL programs suggests a number of paths for enhancing
transformers’ capabilities at symbol processing.

Note: The first section of the paper gives an extended synopsis of the entire paper.
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Mechanisms of Symbol Processing in Transformers

1. Paper Synopsis: How can transformers perform complex symbol processing?

The unprecedented performance of generative language models such as those of the GPT
family (Radford et al., 2018, et seq.) creates a dilemma for the science of intelligence.
Fundamental to virtually all classic theories of natural and artificial intelligence are structured
symbolic representations and symbolic processing of such representations (Hinzen et al., 2012,
reviewed in Sec. 3). These provide the basis for explaining the pervasive compositionality of
intelligent cognition (see Box 1) (Prince & Pinker, 1988). Neural networks appear to be
singularly unsuited for such computation, and should fail catastrophically, for example, at
compositional language processing, including the ultimate challenge for abstract structure
processing, generating complex, syntactically valid natural language (Pinker & Prince, 1988).
Yet neural language models with transformer architectures dramatically out-perform all
symbolic-computation-based models of language processing, and generate rich, syntactically
complex English, virtually flawlessly (Chang & Bergen, 2024).

Box 1. Compositionality and systematicity in cognition

Human cognition copes effectively with a huge range of phenomena by representing
complex entities as structured assemblies of simpler entities (Russin et al., 2024).
Knowledge derived from previous experience with simpler entities can give rise to
knowledge about a novel complex entity by composing existing knowledge of the
simpler entities of which the complex entity is composed. This is compositional
generalization.

This is all so fundamental and natural that we take it for granted. Yet even current
state-of-the-art neural networks do not display the extremely robust compositional
generalization that is characteristic of human cognition.

Formalizing compositional structures as discrete symbol structures such as parse trees
or knowledge graphs gave classic symbolic AI excellent compositional generalization —
to the extent that natural phenomena could be successfully decomposed into discrete
parts. However, adequately decomposing natural complex entities into recombinable
discrete constituent parts typically proved beyond the capabilities of discrete symbolic
methods. If English syntax could be fully formalized with a discrete rewrite-rule
grammar, then a symbolic NLP system in possession of that grammar would exhibit
perfect compositional generalization across the entire language. Despite decades of
attempts, however, reducing natural language to such compositional rules has failed
to adequately cover the actual richness of language use.

Yet compositional analysis still provides the deepest understanding of the portion
of natural language, and cognition generally, that it is able to cover. And while
contemporary neural AI systems display extraordinary coverage, their often dramatic
failures of compositional generalization suggest that however these systems ‘understand’
the world, they do so in a fundamentally different way than we do.

This cursory discussion of compositionality in cognition is necessarily greatly oversim-
plified, but faithfully captures the core ideas. Relatedly, systematic generalization,
often seen as an aspect of compositional generalization, consists of generalizing, to
new concepts, the capabilities already learned for other concepts.

5
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Indeed, while transformer networks often struggle with compositionality, they nonetheless
perform rather well on certain tests of systematicity and compositionality (Sinha et al.,
2024), in particular, when tested via ‘in-context learning’ (ICL), the subject of the work
presented here (Brown et al., 2020). As illustrated in Box 2, in the type of ICL we study, a
transformer is given an input symbol string which is a ‘prompt’ that includes an example in
‘question-answer’ format; this exemplifies a symbolic template for mapping the ‘question’
into the ‘answer’. The input next provides new symbolic material in the ‘question’ format,
which must be inserted into that template to generate a ‘completion’, the corresponding
symbol string in the ‘answer’ format. (A formal presentation is given in Sec. 3.1.)

Box 2. Symbol manipulation with In-Context Learning: Templatic Gener-
ation

Exemplifying ‘in-context learning’, Large Language Models can take the prompt (1)
and generate a continuation (2) (Sec. 4.2.2), consistent with (i) recognizing the initial
Q/A in the prompt as the template (3) — the English-passive-voice-to-predicate-
logical-form transformation — with x = ‘the program’ V = ‘translated’, y = ‘a
compiler’, and (ii) using this template to generate a continuation by inserting x =
‘my big dog’, V = ‘chased’, y = ‘a small black cat’.

(1) Prompt: Q the program was translated by a compiler A translated ( a
compiler , the program ) Q my big dog was chased by a small black cat A

(2) Continuation: chased ( a small black cat , my big dog )

(3) Template: Q x was V by y A V ( y , x )

Another type of template is a simple inference rule in propositional logic.

(4) Prompt: Q x => y A y or not x Q ( u and v ) => z A
(5) Continuation: z or not ( u and v )

(6) Template: Q p => q A q or not p

Or a basic algebraic equality:

(7) Prompt: Q log { x * y } A log ( x ) + log [ y ] Q log { 3a * bˆ2 } A
(8) Continuation: log ( 3a ) + log [ bˆ2 ]

(9) Template: Q log { u * v } A log ( u ) + log [ v ]

Or even a nonsensical pattern:

(10) Prompt: Q ∼ es zd ey db ak ) fx $ { tr dz , + vj kj zo % jq hu rd ag A vj
kj zo $ es zd ey db ak / jq hu rd ag * fx . Q ∼ dv he ) vv bo td $ { xh dp qc
my mz , + qk % hw oc cw uh A

(11) Continuation: qk $ dv he / hw oc cw uh * vv bo td .

(12) Template: Q ∼ x ) y $ { z , + u % v A u $ x / v * y .

6
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It is possible that linguistic theory has for centuries been mistaken to adopt symbolic
computational frameworks, and that classical AI committed the same error. But it is also
possible that transformers can naturally implement symbolic computation, and that this
capability — coupled with the complementary native powers of neural computation — is at
the root of their success. The main contribution of this paper is an explicit demonstration of
how transformers can actually provide an implementational platform for fundamental aspects
of symbol processing: a platform which, of course, supports extremely powerful learning. To
the extent that the neural mechanisms we bring to light here prove to be at work in trained
language models, this constitutes a vindication of symbolic theory, which, when embedded
in neural computation, proves capable of arising through data-driven learning — a result
that has yet to be achieved with purely symbolic computation.

1.1 Research questions

The surprising success of transformer neural networks at exhibiting systematicity and
compositionality in ICL raises many questions, including those in (13).

(13) Potential questions

a. How does the actual training of LMs produce a network that can do such ICL?

b. How do the transformer architectures implementing LMs actually perform ICL?

c. How is it even possible that these networks can do ICL?

These questions are within the ultimate scope of this work, but at this stage we have no
concrete answers, and they are not addressed directly in this paper — although we come
close to answering (13c), with respect to a modestly modified type of transformer. One
reason questions like (13) are difficult is that we have few promising hypotheses for possible
answers, hypotheses precise enough to test. The results we present here can generate a
number of such promising hypotheses; some of these are presented in Sec. 9.2.

To pursue understanding of complex neural networks, which are notoriously opaque, for
guidance we turn to Richard Feynman’s famous dictum, “what I cannot create, I do not
understand” (Gleick, 1993): we design and hand-program a type of transformer network
that demonstrably performs ICL of the type illustrated in Box 2.

In place of the questions (13), currently out of reach, we address questions that we can
answer; the answers to these questions can inform answers to the more ambitious questions
(13).

Our questions (14) are as follows.

(14) Our questions

a. How could any neural network employing fairly standard, general-purpose mech-
anisms do ICL?

b. Can general-purpose operations used by the transformer architecture help design
such a network?

c. Can insights from classic, symbolic AI help design such a network?

Beyond providing a step towards answering the questions (13) from AI, another motivation
for our question (14a) comes from cognitive science, where a debate has raged since the
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first generation of neural (or ‘connectionist’) models of cognition came to prominence in
the 1980s (Pinker & Prince, 1988; Fodor, 1997; Marcus, 2001). The debate focuses on
types of generalization that symbolic models are built to support: crucially, systematic and
compositional generalization (Box 1). Anticipating the challenges that compositionality
still poses for network models today — after 40 years and spectacular progress — in the
1980s, early critics claimed that neural networks were extremely unsuited to realizing the
robust, pervasive systematicity and compositionality that powers human cognition (Fodor
& Pylyshyn, 1988). Although further work is needed for robust compositionality, the work
presented here shows in completely explicit terms how a type of transformer network has the
capacity for a powerful form of systematic ICL. In the network we present, the contribution
that is made by every neuron and every connection to producing this capability is perfectly
well understood — because we designed the network ourselves.

1.2 NL-semantics-free, number-free symbol-manipulation

It is the context of this 40-year debate that has directed this work differently from much
recent work analyzing ICL. Some of that work has looked at prompts such as ‘Q France A
Paris Q Spain A’ (Hendel et al., 2023), or prompts that provide numerical-vector pairs (x, y)
where y is a hidden affine function of x, which the model must infer from the given pairs and
apply to a novel value of x (Akyurek et al., 2022; Garg et al., 2022). But following natural-
language-semantic associations, e.g., between countries and their capitals, and inferring
affine numerical functions, are just the kinds of abilities neural networks have long been
known to possess.

The critique our work responds to concerns entirely different types of capabilities that are
linked to meaning-free symbol processing (Fodor, 1980): identifying potentially meaningless
patterns in strings of potentially meaningless symbols, and generating new strings that
exhibit the same patterns (relatedly, see Lasri et al., 2022). The examples of ICL given in
Box 2 start off being patterns with some meaning for us, in terms of natural language syntax
or logical or mathematical inference. The task we study encompasses such interesting cases,
but we are not actually concerned with knowledge of that sort; the final example in the Box
(10 – 12) achieves the “meaningless symbol manipulation” capability we are targeting: the
symbol strings over which the templates are given in the prompt are randomly-generated
sequences of randomly-generated symbols. The reason for our focus is that, if we present the
prompt ‘Q twice x A x x Q twice a A’ and we get the desired continuation ‘a a’, we want to
be sure it is the result of correctly filling in the given template, and not simple application of
the model’s prior knowledge (e.g., from massive English pretraining data) of the semantics
of ‘twice’; in fact, we’d want the same continuation from the prompt ‘Q thrice x A x x Q
thrice a A’, in violation of the English semantics of ‘thrice’, and the same continuation from
‘Q GBq3 x A x x Q GBq3 a A’.

This NL-semantics-free task is illustrated in the paper’s primary case-study, the Swap

task, which we develop starting in Sec. 3.2. This allows us to focus entirely on how abstract
(meaning-free) pattern recognition over (meaning-free) tokens is possible within neural
computation. The general task we study — Templatic Generation of text — not only covers
many interesting cases like those illustrated in Box 2, it also demands nearly all the abstract
symbol-processing capabilities, provided for free by symbolic computation, which have long

8
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been claimed to be both necessary for human-level cognition and beyond the capabilities of
neural computation; we present these in (26) and illustrate them extensively in Sec. 3.

The language use enabled by general intelligence involves a complex, intimate inter-
mingling of purely formal knowledge that is NL-semantics-free with enormous quantities
of NL-semantics-laden knowledge. The latter component is under intense scrutiny and
development within AI, and we here seek to isolate and develop the former component which
has long been a profound challenge for neural computation. Ultimately, we seek to unify
these two components of neural computation; preliminary discussion of this unification is
initiated in Sec. 9.4.

1.3 The Transformer Production Framework (TPF)

The primary contribution of the present work is the Transformer Production Framework
(TPF); we use it to study in-context learning to fill in meaningless, randomly-generated
symbolic templates, but it can be applied much more widely. In TPF, a computational
system is described at multiple levels, as in (15); we follow the proposal of Hamrick &
Mohamed (2020) that machine-learning work take advantage of the three levels of description
famously proposed by the legendary cognitive scientist David Marr (1982).

(15) Three-level specification of a computational system in the Transformer Production
Framework TPF

a. Functional level : a highly general symbolic templatic generation function speci-
fying completions of templatic symbol-sequence inputs (‘prompts’) [Sec. 4].

b. Algorithmic level , comprising two sub-levels:

i. a high-level symbolic production-system program in the PSL programming
language [Sec. 5];

ii. a lower-level program for a new type of symbolic abstract machine, the QKV
Machine — a kind of symbolic transformer [Sec. 6].

c. Implementation level : a numerical Discrete-Attention-only Transformer (DAT)
defined by its weight matrices for generating queries, keys and values [Sec. 7].

What is meant here by a production system is a type of symbolic computational archi-
tecture briefly summarized in (16) (Jones & Ritter, 2003). Production systems include Emil
Post’s rewrite-rule systems (Post, 1943) and the string-rewriting systems at the foundation of
the theory of formal grammars (Book et al., 1993), all key to the classic theory of (symbolic)
computation (Hopcroft et al., 2000). Early, special-purpose neural models — very different
from the transformer — were developed in the late 1980s for implementing production
systems (Dolan & Smolensky, 1989; Touretzky & Hinton, 1988).

(16) Production Systems

a. A production is a Condition-Action pair: when the symbols in a common
workspace meet the requirements of the Condition, the Action may be taken,
which adds or deletes information from the workspace.

b. In the simplest case, the productions are linearly ordered and apply in sequence,
the sequence being executed repeatedly until some termination condition is met.

9
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c. That human intelligence is best modeled by a production system is the founding
principle of multiple leading theories of the computational architecture of human
cognition (Anderson, 2005; Laird, 2019; Ritter et al., 2019).1

d. Cognitive Architecture production systems often have built-in complex capabili-
ties of symbolic-pattern-matching enabling Conditions to be quite complex; but
in our production system, conditions can only require that specified variables
have specified values, and actions can only write values into variables. We
want to understand how complex symbol processing can emerge through the
interactions of productions that individually possess much less powerful built-in
symbolic capabilities: specifically, productions simple enough to be precisely
implementable in neural networks with a type of transformer architecture.

Following (15), we present TPF by formally specifying (a) a class of target symbol-
sequence-to-symbol-sequence functions, each specifying input-output pairs for a particular
case of templatic text generation; (b) a simple high-level symbolic production-system
programming language (PSL) for computing these functions, and a compiler that maps such
a program into a lower-level symbolic program for the QKV Machine; (c) a compiler that
maps a QKV Machine program to its implementation in numerical transformer neural network
weights. We present a detailed case study showing how a TPF system can perform ICL
tasks which, while seemingly simple, actually implicitly demand surprisingly sophisticated
symbol processing by the neural network that implements the system.

It remains for future work to determine whether TPF can shed light on the ICL performed
by trained language models, and how language-model training gives rise to such computation
(13). We suggest hypothesized answers for such questions, and propose methods for testing
them, in Sec. 9.2. But we emphasize that the work reported here addresses computability,
and not learnability, by transformer networks — despite the potentially confusing ‘L’ in
‘ICL’.

An outline of the paper is given in (17); the core consists of the 3-level presentation of
TPF in (17c) – (17e) [Secs. 4 – 7].

(17) Paper outline

a. We first discuss related research in which this work is situated [Sec. 2].

b. We next motivate the case study forming the core of the paper [Sec. 3].

c. Adopting a functional level of description, we present a class of symbolic template-
filling functions which we seek to compute, motivated by the discussion (17b);
we also show that these functions can be computed, with varying success, by
pre-trained LMs and by transformers trained from scratch on the task [Sec. 4].

d. Moving to the algorithmic level, we present algorithms for computing such
functions using two abstract symbolic machines:

i. first, the algorithm is stated in a Production System Language (PSL) for a
Production System Machine (PSM) [Sec. 5];

1. See Ryu & Lewis (2021) for explication of a transformer’s sentence-processing behavior in terms of a theory
of human sentence processing (Lewis & Vasishth, 2005) couched in a general production-system-based
cognitive architecture (Anderson, 2005).
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ii. then the algorithm is compiled into a program for the QKV Machine, a type
of symbolic transformer architecture [Sec. 6].

e. An implementation-level description is produced by a compiler for exactly im-
plementing QKV programs in a version of the transformer neural network
architecture that uses a type of discrete attention. Experiments are reported
that verify the correctness of the algorithms and their implementation. [Sec. 7].

f. The generality of the framework is established by theorems asserting the Turing-
Universality of the language PSL [Sec. 8] (see Sec. 1.4 below).

g. A general discussion of the work is offered, including how it can help address
questions (13). Future work is suggested, including a discussion of extending
compositionality further [Sec. 9].

h. Appendices provide

A. details of our ICL algorithm

B. a detailed discussion of Weiss et al.’s (2021) RASP language for programming
transformers, and relations between RASP and our TPF

C. a generalization of the analysis which exploits Tensor Product Representa-
tions

D. a formal grammar for Templatic Generation Tasks

E. the system-prompt prefix used to test trained transformers on the Templatic
Generation Task

F. a formal grammar for the Production-System Language PSL

G. a formal description of QKVL programs

H. a formal compiler for translating a PSL program to an equivalent QKVL
program

I. details on the operation of the Discrete-Attention-only Transformer neural
network, DAT

J. exploratory testing of the GPT-4 LLM model on the TGT dataset

K. exploratory from-scratch training and testing of various sequence-to-sequence
architectures on the TGT dataset

To preview very briefly, our results yield the following general answers to our questions
(14).

(18) Our questions: preview of answers

a. How could any neural network employing fairly standard, general-purpose mech-
anisms do ICL?

By using hidden-state — or ‘residual-stream’ (Elhage et al., 2021) — encod-
ings of state variables describing each input symbol, including structural
variables that encode abstract parse-tree information.

b. Can general-purpose operations used by the transformer architecture help design
such a network?

The network can target relevant previous symbols for information access
by ‘query-key matching’ of variable values (crucially including structural
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variables); and by setting new values for variables through ‘value vectors’
returned by attention.

c. Can insights from classic, symbolic AI help design such a network?

Just as Production System architectures have enabled powerful symbolic
systems for AI and for modeling human higher-level cognition, a Production
System programming language can be designed which (i) can be used to
write a general, fully interpretable symbolic program for templatic text
generation through ICL, and (ii) can be implemented in a transformer by
using key-query matching to satisfy production Conditions, and value vectors
to perform production Actions.

In more detail, our work develops the correspondences spelled out in (19), several of
which are familiar from previous work.

(19) How can ICL in a transformer perform symbolic templatic text generation?

Via the following [transformer element] ∼ [symbolic element] correspondences:

a. a cell’s residual stream ∼ a variable-value structure2

i. a subspace of the hidden space ∼ a state variable

ii. a vector component within a variable’s subspace ∼ a value of that variable

b. a layer’s internal connections ∼ a production3

i. query-key matching in attention ∼ evaluating the condition of the layer’s
production

ii. value vectors ∼ the production’s action

iii. query-key matching on a subspace corresponding to a goal ∼ conditional
branching for goal-directed action

c. a nested set of structural variables ∼ hierarchical data structure

i. sharing the value of a level-l structural variable ∼ in the same (type of)
level-l constituent — adapted from (Hinton, 2023)

d. a sequence of structural-variable values (at the ‘field’ level) ∼ the sequence of
abstract roles defining a template

1.4 Turing-Universality of the results

Although the presentation here focuses heavily on the ICL of templatic text generation,
our results on what transformers can compute is actually much more general. We show
here how programs in the Production System Language PSL can be naturally compiled into
transformer networks whose behavior is completely explainable through the PSL programs
they implement. But how general is the class of computations that can be expressed as
PSL programs? In fact, every computable function can be computed by a PSL program:
PSL is Turing complete. This is shown in Sec. 8. Hence, the Turing-completeness of
hard-attention transformers shown by Pérez et al. (2021) can in effect be derived from the
Turing-completeness of PSL. Thus this work speaks not only to how transformers can carry

2. As when defining an environment for evaluating a function or creating a function closure.
3. Production systems are like NNs in lacking global control structure.
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out the powerful symbolic computation involved in ICL templatic text generation, but how
transformers can in fact function as universal computers.

2. Related work

This work complements other ongoing work on understanding neural computation, and
specifically, in-context learning in transformers. Unlike most mechanistic interpretability
work, we are not analyzing trained models, probing for trees or other data structures.
Our question is one of mechanistic computability : what can the transformer architecture
compute in ICL, and exactly how? We focus on using ICL for the general but tightly
constrained task of templatic text generation, as defined in 4.1. Our approach is to design an
algorithm for performing templatic generation, in a symbolic form, which can be compiled into
weights for a modified transformer architecture. The resulting network is, by construction,
fully mechanistically interpretable.

The work pursued here is complementary to much existing work in another respect: we
focus on NL-semantics-free, number-free ICL, as emphasized in Sec. 1.2.

2.1 Discovery of ICL

GPT-3: The concept of in-context learning was introduced by Brown et al. (2020), who
showed that their GPT-3 transformer could solve new tasks from a few examples in the
prompt, without any gradient updating or fine-tuning. Most tasks depended on text meaning,
although one task required repairing syntactic errors. The tasks did not include any cases
of the pure symbolic manipulation of Templatic Generation, where the generated text was
required to be analogous to an example contained in the prompt in that both were generable
from a common template, inserting different text strings to the template’s slots.

2.2 ICL mechanisms

Induction heads: In their quest for mechanistic interpretability of in-context learning,
Olsson et al. (2022) report the discovery of ‘induction heads’ in their various transformer
models. These logical heads are actually specialized pairs of attention heads (in separate
layers) that use past sequence pairs in the context to predict the successor to the current
column. The pair consists of a previous token head and an actual induction head, with
the second head consuming information produced by the first. The authors propose that
induction heads might constitute the mechanism for the majority of all in-context learning
in large transformer models; they present detailed (but indirect) evidence to support this
hypothesis.

In our work, we perform templatic-production tasks using a more complex algorithm
whose core includes induction-head-like patterns: it has specialized blocks (layers) to trans-
form information from previous (n− 1) to current (n) columns, and uses that information
in subsequent blocks for various purposes, including searching for past occurrences of the
current column symbol. In Olsson et al.’s transformers, the induction heads operate by
increasing the probability of an outcome; in our transformers, this pattern of prefix matching
and copying acts in a deterministic symbolic manner, matching abstract category labels as
well as specific symbols. Our work also reflects an expansion of their idea of a residual stream,
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but we take a designed-field approach, with many types of predetermined information fields,
as opposed to learned extraction and update operations on the residual stream.

Bayesian learning: Xie et al. (2022) posit that ICL can emerge in models when pre-training
documents possess long-range coherence derived from a document-level ‘concept’. They
study knowledge-based ICL examples with 0-64 shots that must predict a single correct
output token. They explain that models must infer a latent concept from the prompt’s
n-shot input/output pairs to predict the correct output token, describing this as an implicit
form of Bayesian inference. In our work, the ‘concept’ providing coherence to a particular
prompt is a symbolic template, which governs the generation of an entire output string; this
template must be inferred from each prompt’s single example. We analyze the inference
process involved in completing such prompts, but not the conditions enabling such a process
to be learned.

Gradient descent: Dai et al. (2022) report finding a duality between attention in trans-
former models and gradient descent, and posit that in-context learning can be understood
as implicit fine-tuning by adjusting the model weights using attention in the feedforward
inference process. The contribution to attention from the in-context material can be viewed
as an adjustment to the trained attention-governing weights, with the value vectors playing
the role of back-propagated error signals in a fine-tuning update restricted to query- and
key-generating weights. They study ICL classification tasks, with up to 32-shot examples.
Our work is focused on how a pre-determined algorithm for sophisticated symbol-processing
can be applied using 1-shot examples to predict an entire output sequence, not just a
classification label.

CSCG: Swaminathan et al. (2022) view in-context learning through a different sequence-
learning model called the clone-structured causal graph (CSCG), using the mechanisms of
schema learning, recall, and rebinding. They posit and confirm that similar mechanisms
could exist in transformers. They study both knowledge-based classification tasks as well as
abstract sequence-prediction tasks.

2.3 Influence of pre-training data

Training data requirements for ICL: Chan et al. (2022) establish 3 requirements for
LM-training data to give rise to a model exhibiting ICL: data burstiness (not uniformly
distributed), data with a large number of rarely occurring classes, and data with dynamic
meaning. Using the Omniglot dataset, they show that ICL usually competes with “in-weights
learning”, with one of the two winning.

2.4 ICL function learning

Simple numerical functions: Garg et al. (2022) train decoder-only transformers from
scratch to perform ICL in simple numerical function classes: linear functions, sparse linear
functions, decision trees, and two-layer ReLU neural networks (using 20–40 shot examples
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of 20-dimensional inputs). They show that ICL achieves performance comparable to an
optimal least squares estimator, and is robust to certain types of train-test distribution shift.

Language learning: Akyürek et al. (2024) introduce a new task for studying ICL —
stochastic languages — and compare the performance of transformers to state space models
and their variants. The find that transformers perform best on this task, and posit that
induction heads are important. They show improvements on the other models when the
equivalent of induction heads are added.

2.5 ICL learning process

Generalization and Stability: Li et al. (2023) study the generalization and stability
of transformers pre-trained using multi-task learning (MTL) with n-shot-style examples.
Through proofs with mild assumptions, they obtain generalization bounds for ICL that
depend on the stability of the transformer algorithm, showing that as the ICL prompt length
increases, the ICL predictions become more stable. They also find that the transfer risks on
unseen examples depend on the number of examples and complexity of the MTL tasks, but,
surprisingly, not on the complexity of the transformer architecture.

ICL algorithms for linear regression: Akyurek et al. (2022) study linear regression,
exploring whether ICL uses one of three known algorithms to learn the linear function latent
in the examples in a given ICL prompt. They identify 4 operations over the hidden states of
a transformer layer that can be implemented in a single transformer layer (move-subvector,
matrix-multiply, scalar-divide, affine-transform) and prove by construction (programming
the transformer with these 4 instructions) that a transformer can emulate 3 classical solutions
to linear regression: gradient descent, closed-form ridge regression, and exact least-squares
regression. They then pre-train transformers on linear regression tasks with an ICL-style
objective and examples, and compare the resulting behavior to the 3 previously programmed
models. They find that their trained transformers transition between the classical algorithms
as depth and dataset noise vary, and converge to optimal Bayesian decisions as the width
and number of layers grow.

PAC in-context learnability: Wies et al. (2023) extend the PAC framework to prove,
under mild assumptions, that ICL efficiently ‘learns’ tasks through examples. Their pre-
training data is a mixture of multiple latent downstream tasks, presented in n-shot-style
prompts, with consistent delimiters in each prompt. They conclude that “in-context learning
is more about identifying the task than about learning it” [p. 1]. They find polynomial
sample complexity in the number of shots per prompt.

2.6 Improving ICL

Meta training: Min et al. (2022) fine-tuned a GPT-2 large transformer tasks from 142
NLP datasets reformatted as ICL style tasks. This resulted in increased performance over
baselines on the test set (containing 52 unique target tasks), sometimes beating models with
8x larger parameter count. Performance increased with the number and diversity of the
fine-tuning tasks. Best performance resulted from fine-tuning with both instructions and
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the meta-training tasks.

Meta ICL: Coda-Forno et al. (2023) introduced a technique to improve ICL by pre-
ceding the normal n-shot examples of a task in the prompt with K n-shot examples from
other, related tasks. They study this technique using the pre-trained GPT-3 model and
2 tasks: 1-dimensional regression and a 2-armed bandit. Through analysis of the ICL
activations, they show how these K additional-task examples reshape the model’s prior over
expected tasks.

Reasoning module: Bhatia et al. (2023) analyze ICL failure cases, relative to task
specific fine-tuning, and posit that ICL has all the information it needs — the right represen-
tations for the task — but fails due to its inability to perform simple probabilistic reasoning
over the representations to predict the next token. They create a separate, task agnostic
reasoning module (a decoder-only transformer), trained only on synthetic logistic regression
tasks. After training, the models are composed by feeding the output of the base model
through a PCA/averaging layer and then to the reasoning module. An additional variant
called leave-one-out (LOO) embedding improves the model further. They also demonstrate
that the reasoning module is not just model- and task-agnostic, but also modality-agnostic,
by using it for binary classification tasks with audio and image inputs.

2.7 Programming transformers

RASP language: Weiss et al. (2021) proposed the RASP programming language4 as
a computational model for transformer encoders, which produce sequences of the same
length as their input. RASP is based on the concept of manipulating sequences, starting
with 2 inputs: token and index sequences. Sequences are then manipulated by a pair of
select and aggregate operations (corresponding to the attention module) and by a variety
of element-wise operators (corresponding to the MLP module). RASP programs can be
compiled into a realized neural transformer. Weiss et al. showed how RASP programs could
be written to solve several string-processing tasks, including computing, for each input token
t, the number of distinct token types in the string that occur with the same frequency in the
string as does t, and Dyck-k, detecting balanced brackets in a string with k distinct types of
brackets. In our work, we use PSL, a language inspired by cognitive production systems and
designed for transformer decoders. PSL produces variable length outputs, encodes multiple
state variables that can be implemented in a transformer’s residual stream, and is more
aligned to our task of templatic text generation.

RASP-L language: Friedman et al. (2023) proposed a type of discrete transformer
whose weights can be translated into Python programs. These transformers are programmed
using the new language called RASP-L, a variant of RASP. Their discrete transformer deploys
a ‘disentangled residual stream’, encoding a discrete set of variables, either categorical or
numeric. The Discrete-Attention-only Transformer (DAT) that we propose below at the
implementation level of our Transformer Production Framework (TPF) is essentially their

4. Not to be confused with the random-access stored-program machine, also known as a RASP machine
(Hartmanis, 1971): a random-access-memory version of the Universal Turing Machine (Sec. 8.2).
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categorical case. Their categorical variables are produced by category heads, using 0/1
attention weights as follows: if no key matches the query, the first column is accessed; if
more than 1 column’s key matches, the column closest to the querying position is used.
Numeric variables are produced by numeric heads, which count the number of 0/1 attention
matches. They find that simpler tasks are learnable (and can be translated to Python). The
discrete transformer struggles to learn long input tasks, and struggles to learn parsimonious
programs for tasks. They call for future work on discrete optimization techniques.

For further discussion of RASP-related work, and its relation to the work reported here,
see App. B.

RASP vs. TPF: RASP-based work and TPF share the approach of deriving a high-
level symbolic programming language which is compiled into a transformer network, with the
goal of advancing mechanistic explanation of transformer computation. Intuitively, however,
on several conceptual dimensions the approaches differ.

(20) TPF vs. RASP-based work

a. TPF development has focused on text generation, rather than the types of
sequence-analysis functions centrally studied with RASP. Rather like the sequence-
processing tasks studied with RASP, the PARSE program in TPF (Sec. 3.3.1)
analyzes the prompt by assigning meta-properties to symbols in the prompt,
but these properties are not produced as output values per se; rather they are
embedded as keys and values to drive attention during text generation by the
GEN program (Sec. 3.3.2).

b. As in the implementation of RASP programs, in TPF the residual stream is
decomposed into subspaces encoding the values of variables, but whereas the
variables in the RASP work are associated to the nodes of a computation graph
(Lindner et al., 2023, p. 5, point 5), the variables in TPF are associated only to
individual symbol positions in the prompt and have a declarative, rather than
a procedural, character: static properties of the symbols which are needed to
support generation of new text.

c. The TGT requires identifying symbol sequences in the prompt as values of
variables in a template, and moving them to new positions without alteration.
Unlike for RASP, there is no use of MLPs in the current version of TPF because
symbols are only copied, not modified — not used to generate different symbols.

d. In RASP work, the matrix of attention values can be defined by invoking an
arbitrary predicate relating the query- and key-positions. In TPF, attention is
directly determined by separately specifying values for variables in the query and
key, with attention driven to points of exact matches between specified values.
Multiple variable are specified in an individual query or key.

e. RASP work often uses 1-hot attention, like TPF, but in some RASP work
(Friedman et al., 2023, p. 18) ties for best-matches of keys to queries are broken
in favor of the closest match: in TPF, it is the left- (or right-)most match that
wins.
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3. Motivating a case-study of in-context learning

We are attempting to understand how neural networks can perform symbolic computation,
but just what is ‘symbolic computation’ in this context? To address this, this section follows
the outline in (21).

(21) Section outline

a. identify fundamental properties of symbolic computation [Sec. 3.1]

b. present an illustrative in-context learning task — Swap — that calls on the
functionality expressed in these properties [Sec. 3.2]

c. preview the remainder of the paper, which presents a general function class
that Swap exemplifies, the symbolic languages PSL and QKVL for expressing
algorithms to compute these functions at two different levels of description, and
a compiler that translates these programs into a novel type of transformer neural
network. [Sec. 3.3]

3.1 Fundamental properties of symbolic computation

As in Box 2 (1 – 3), consider the following mapping, a simple instance of semantic parsing
in which an English sentence in passive voice is mapped to a predicate-calculus-style logical
form:

(22) the program was translated by a compiler 7→ translated(a compiler, the program)

This exemplifies a general schema or template (with variables in italics and constants in
roman font):

(23) x was V by y 7→ V (y, x )

The variables take values that are strings of symbols: this binding of values to variables
is of particular interest because it has been argued to be beyond the capabilities of neural
networks (e.g., Marcus, 2001, but cf. Smolensky 1987, 1990).

Henceforth we drop the punctuation marks used above to aid human readability, so the
template becomes

(24) x was V by y 7→ V y x

This can be cast in binary tree-to-tree form as an instance of a function we call Passive→Logical:
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(25) Passive→Logical

S

VP

VP

PP

yby

V

was

x

7→ LF

args

xy

V

The symbols constituting the values of x, y are themselves trees, moved as wholes from
their positions in the input (syntactic) tree to their positions in the output (LF) tree.

In addition to variable binding, Passive→Logical displays a constellation (26) of crucial
capabilities of symbol processing (Newell, 1980) that have long been thought to be outside
the purview of neural network computation (Fodor & Pylyshyn, 1988; Marcus, 2001); but
cf. Smolensky (1987, 1990). We will see explicitly the mechanisms by which these abilities can
in fact be naturally achieved in a class of transformer networks. These properties collectively
characterize much of the systematicity and compositionality that gives symbolic computation
such great power for explaining — and generating — intelligent behavior (Box 1).

(26) Fundamental properties of symbolic computation

a. Representations have part/whole structure: they are composed of constituents
which

i. function as wholes in themselves for processing (e.g., they can, as wholes, be
moved, copied, deleted, compared for equality);

ii. preserve their identities across different positions;

iii. have types: each constituent is a member — a token — of a particular
category of constituents.

b. Representations typically have hierarchical structure: as a whole in its own right,
a constituent may be composed of subconstituents.

c. Representations have abstract roles that constituents fill:

i. the type of a constituent is characterized by a sequence of distinct roles that
its subconstituents fill (e.g., the binary tree type can be specified with two
roles: left-child, right-child);

ii. a role is a variable, and in a particular structural instance, it is bound to a
value, its filler : the constituent that fills it;

iii. copying a constituent as a whole (26a-i) entails copying its sequence of roles,
each bound to the particular structure that fills it in the constituent token
being copied.

d. Representations contain symbols: a constituent that has no subconstituent is
an atomic element — a symbol, a token of its atomic-constituent type (e.g., in
many grammar formalisms, a word’s part-of-speech)
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e. Representations may be recursive: a constituent may have the same type as one
of its subconstituents, or subsubconstituents, etc. (e.g., VP in (25)).

f. Processing of representations:

i. can include conditional process branching, conditioned on a representation’s
structure, as well as its content;

ii. can include building a structure by binding its roles (variables) to particular
fillers (values);

iii. can include extraction from a structure by unbinding one of its roles, yielding
that role’s particular filler as output;

iv. is compositional : a constituent is processed by processing its subconstituents
and combining the results into a new structure following a composition
procedure determined by the type of the constituent.

Experimental evidence that transformers can implement these properties (26) is provided
in Sec. 4.2, which shows that mappings like (24) can be performed by language models
such as GPT-4 with ‘in-context learning’: based only on its pretraining, given a prompt in
question (Q)/answer (A) form like (27),

(27) Passive→Logical-like GPT prompt
Q J was V by K A V K J Q B was V by C A

GPT-4 (gpt-4-0613, 2023) can correctly continue (27) with (28):

(28) Passive→Logical-like GPT continuation
V C B

(Throughout the paper we follow the convention of setting the prompt string in blue text
and the continuation in orange text. This color contrast, and the special font used for Q
and A here, are simply to aid the human reader; they are not part of the formalism of TPF
that we are developing.)

Although examples of symbolic mappings are easier for us to process when the symbols
are words, the strings are phrases, and punctuation characters are used (as in Box 2), we
will focus on prompts in which symbols are typically simply individual characters, as in
(29a) below. This is because in this work, as emphasized in Sec. 1.2, we seek to understand
the capabilities of transformer networks to perform pure symbol-manipulation tasks in which
symbol meanings are irrelevant or non-existent. Pretraining gives language models
great facility with English, which can be exploited to complete prompts in English without
necessarily behaving strictly on the basis of meaning-free patterns of symbols. As noted
above, completing Q twice x A x x Q twice a b A with a b a b could reflect knowledge of the
semantics of English ‘twice’ acquired in LM pretraining, or an ability to perform abstract,
NL-semantics-free templatic generation — both are of considerable interest, but the work
here is focused on the latter, as most other work on ICL assesses NL-semantic knowledge,
and the present research is intended to be complementary to that large body of other work.

Recognizing the pattern in the prompt (27) as the instantiation of a template (24) with
variables x and y assigned values J and K, and then generating a continuation by reassigning
the variables the new values B and C, is already a non-trivial instance of symbol processing.
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A considerably more challenging class of such tasks allows the variables to take on values
that are not just single symbols, but symbol strings: these must be parsed out of the input to
identify the template structure; this was already the case in (22), where each of the variables
x and y in (24) had two-symbol values: “the program” and “a compiler”, respectively. We
will study prompts in which constituents take on values with variable numbers of symbols;
this will be referred to as the ‘length’ of constituents. In addition, prompts will vary in the
number of constituents they employ (number of ‘slots’ in the templates).

3.2 A case study: Swap

An instance of this more challenging type of task is Swap, which will provide a primary case
study for the remainder of the paper. An illustrative prompt for Swap is given in (29a). The
location of V in the answer substring has now been shifted relative to Passive→Logical so
that the pattern now more closely resembles the task Passive→Active, where the passive
form “the program was translated by a compiler” is mapped to the active form “a compiler
translated the program”: the linear positions of the subject and object have been swapped.

(29) Instance of Swap

a. Prompt: Q B C V D E A D E V B C Q F G V J K L A
b. Continuation: J K L V F G

The template for Swap is simply

(30) Swap template: Q x V y A y V x

The symbols Q, V, and A function as fixed delimiters, delimiting the strings providing the
values of the variable constituents (or ‘slots’, or ‘arguments’) x and y. We will be studying
templates with varying numbers of constituents: Swap has 2 (30).

To make examples more transparent to readers, we will typically follow the convention
used in (29a) according to which the value of a template slot (x or y here) is a string of
individual characters in alphabetic sequence. The Swap task we study does not require this:
aside from the reserved delimiter symbols Q and A which respectively initiate Question-
and Answer-regions of the prompt, the identities of the individual symbols in the examples
are arbitrary, of no relevance to the task; in particular, these symbols need not be single
characters and could be words or non-alphanumeric symbols, as in (1).

The prompts we study are a concatenation of two strings. First, an initial question-answer
example string, which we label X — starting at a prompt-initial token of the reserved symbol
Q and terminating before a second token of Q. Next is a continuation-cue string, which
we label C: this consists of a Question-region string followed by the reserved symbol A, a
prompt for completing an Answer-region; the continuation-cue string starts at the prompt’s
second Q and continues through the prompt-final A. Note that we will reserve the terms
example and (continuation-)cue for this usage. When training or testing models on ICL, we
will refer to the entire input as a ‘prompt’, reserving ‘example’ for the portion of the initial
portion of the prompt that instantiates the template driving the prompt’s continuation.
(Thus training set size is measured by the number of ‘prompt/completion’ pairs it contains,
rather than the number of ‘examples’.)

For (29a), this structure is shown in (31) (and in more complete tree-form below in (32)).
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(31) Example-Cue structure of (29)

a. example X = Q B C V D E A D E V B C

b. cue C = Q F G V J K L A

The (prompt, continuation) pairs we study are the (input, output) pairs of some function
in a class F we define below in (39). In the following informal discussion, when we mention
some structural property of the prompt or continuation, that property is imposed by the
definition of F .

3.3 A walk-through of the symbolic computation implicit in the Swap task

How to rationalize the continuation in (29)? Intuitively, in the example that initiates the
prompt, we recognize the Q-region (QR) substring Q B C V D E as instantiating the template
Q x V y of (30), and from this, recognize the A-region (AR) substring A D E V B C as
instantiating A y V x. Then in the continuation cue, using the template given in the Q-region
of the example, we recognize a new instance of the template in which x now has value F
G while y now has value J K L. Inserting these values into the template for the example’s
A-region, A y V x, determines that the continuation from the final A should be J K L V F G.

Supporting this intuitive analysis is the structure in (32). We now describe this structure’s
role in defining and performing the Swap task, identifying the essential roles in the algorithm
of the key properties of symbolic computation spelled out in (26). In this informal section,
we will make free use of the properties of the function class F providing the functional-level
description of our TPF system (15a): these properties are formally defined below in (39), and
(61) indicates how particular steps in the algorithm are justified by that formal definition.

(32) Swap instance (29) full (prompt + continuation ) structure: Target
S

C

AR

F1

uF1

GF

FV

uFV

V

F2

uF2

LKJ

FA

uFA

A

QR

F2

uF2

LKJ

FV

uFV

V

F1

uF1

GF

FQ

uFQ

Q

X

AR

F1

vF1

CB

FV

vFV

V

F2

vF2

ED

FA

vFA

A

QR

F2

vF2

ED

FV

vFV

V

F1

vF1

CB

FQ

vFQ

Q

Within the Q-region QR of the example X (subconstituent QR within constituent X), the
substrings of the template (30) — Q, x, V, y — are treated as four subconstituents we will
call fields: they are labelled FQ, F1, FV, F2. The delimiter fields FQ and FV alternate in
linear position with the constituent fields F1 and F2. The A-region AR contains the same
fields as QR, but with F1 and F2 swapped, and with the initial field now FA rather than
FQ.

The field structure found in the Q-region QR of the example string is identical to that of
the QR in the continuation-cue string C (subconstituent QR within constituent C), but the
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values of F1 and F2 are different strings. These new field values are then inserted into a
copy of the field structure of the example A-region (AR within X) to generate the output,
completing the A-region of the continuation (AR within C).

The previous paragraph is a high-level overview of the algorithm in our TPF framework
that will generate the continuation using the complete parsed template structure (32). This
will be decomposed into an initial parsing algorithm PARSE which generates the portion of
the tree in (32) that dominates the input provided by the prompt (blue symbols). This will
be followed by a generation algorithm GEN that uses this parse to build the remainder of
(32) (the orange symbols). We begin by walking through the parsing algorithm.

3.3.1 Parsing algorithm PARSE: Informal walk-through

A first step towards building the Swap structure (32) is parsing the prompt into four regions,
shown in (33): in order, they are the Q-region of the example, the A-region of the example,
the Q-region of the cue, and the A-region of the cue, which contains only the symbol A
initially, but will be extended by the generation algorithm. The start of each region is
marked by a reserved delimiter symbol, either Q or A. [This illustrates property (26b); S is
composed of two subconstituents of type X and C; the X and C subconstituents are in turn
each composed of two subsubconstituents of type QR and AR. Thus we have two distinct
tokens of both type QR and type AR: property (26a-iii). The beginning of each of the two
type-QR constituents is signalled by a token of the atomic Q type (26d); it is important
that these two symbols are recognizably tokens of the same type: property (26a-ii)]

(33) Swap instance prompt (29a): region structure
S

C

AR

A

QR

LKJVGFQ

X

AR

CBVEDA

QR

EDVCBQ

A next step is parsing the Q-region into fields, shown in (34); as already mentioned,
these are the substrings into which the region must be divided to capture the templatic
pattern (30) which the generation process will later need to fill. Each substring is taken to
be the value assigned to a variable, the field that it fills. The delimiter Q is the value of the
delimiter field FQ. V is also a delimiter, the value of the field variable FV: all delimiter fields
have a constant value throughout the input structure S. That V repeats in the Q-region of
the cue signals that it is a delimiter: in the task we study, non-delimiter fields must change
value between the example and the continuation-cue. FV separates the two argument slots
of the template: x and y in (30). The first of these is the field F1, with value B C; the
second is F2, with value D E. These non-delimiter fields will be called constituent fields:
their values are not fixed; they are the open slots in the template, which take different values
in the cue and in the example.
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(34) Swap instance prompt (29a): example region field structure (delimiters underlined)
S

C

AR

A

QR

LKJVGFQ

X

AR

F1

vF1

CB

FV

vFV

V

F2

vF2

ED

FA

vFQ

A

QR

F2

vF2

ED

FV

vFV

V

F1

vF1

CB

FQ

vFQ

Q

In order that their boundaries be well-defined, constituent fields in the example Q-region
must be separated by delimiter fields (which we mark by underlining). Thus B C and D
E are the values of constituent fields, which we are calling F1 and F2; they are separated
by the delimiter field FV. B C is labeled as the value of F1 by being grouped under the
node vF1; likewise for D E and vF2. That B C and D E are the values of constituent fields is
signalled by their appearance as substrings of both the Q- and the A-regions of the example:
these symbol-sequences retain their identities — are detectable as identical — across the
different regions in which they appear (26a-ii). The values of constituent fields vary across
inputs, but within a given Q/A pair within a single input — i.e., separately within each of X
and C — these fields have the same values. Like the Q-region of the example, the A-region
of the example has vF1 = B C as the value of F1, and vF2 = D E as the value of F2: but the
ordering of fields is different in the Q- and A-regions of the example. These field sequences
are respectively the subconstituent role sequences characteristic of constituents of type QR
and AR [property (26c-i)].

Since the parsing of the Q-region of the example identifies the sequence of roles (here,
fields) characteristic of type-QR constituents, the Q-region of the cue can be parsed using
the same field sequence: this is shown in (35).

(35) Swap instance prompt (29a): complete field structure
S

C

AR

FA

uFA

A

QR

F2

uF2

LKJ

FV

uFV

V

F1

uF1

GF

FQ

uFQ

Q

X

AR

F1

vF1

CB

FV

vFV

V

F2

vF2

ED

FA

vFQ

A

QR

F2

vF2

ED

FV

vFV

V

F1

vF1

CB

FQ

vFQ

Q
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Given the sequence of fields of the Q-region of the cue, we can identify the values filling
those fields. The delimiter fields FQ, FV are matched to their fixed string values Q, V (the
same in the cue as in the example); and the substrings between those delimiters are parsed
as the new values of the constituent fields F1, F2 in the cue: these are uF1 = F G, uF2 = J
K L. [Illustrating property (26c-i), constituents of type QR have a characteristic sequence
of roles (here, ‘fields’): FQ F1 FV F2, whether embedded within an X or a C constituent
(26a-ii). Constituents of type AR have the role-sequence: FA F2 FV F1, not only in the
given AR embedded within X, but also in the to-be-generated AR embedded within C.]

3.3.2 Generation algorithm GEN: Informal walk-through

Having identified the field sequence of an AR constituent from the AR within the example,
the same sequence populates the AR in the cue: (36) [properties (26a-ii) and (26c-i)].

(36) Continued Swap instance (29): field structure
S

C

AR

F1FVF2FA

uFA

A

QR

F2

uF2

LKJ

FV

uFV

V

F1

uF1

GF

FQ

uFQ

Q

X

AR

F1

vF1

CB

FV

vFV

V

F2

vF2

ED

FA

vFQ

A

QR

F2

vF2

ED

FV

vFV

V

F1

vF1

CB

FQ

vFQ

Q

Within a single QR/AR pair, each field has the same value in both the QR and the AR
subconstituents, so the new values of the fields identified in the QR of the cue — uF1 and
uF2 (along with the fixed value of the delimiter field FV) — must serve as the values of
those same fields in the completion’s AR (37) [illustrating (26c-iii)].

(37) Swap instance (29) full structure: Generated
S

C

AR

F1

uF1

GF

FV

uFV

V

F2

uF2

LKJ

FA

uFA

A

QR

F2

uF2

LKJ

FV

uFV

V

F1

uF1

GF

FQ

uFQ

Q

X

AR

F1

vF1

CB

FV

vFV

V

F2

vF2

ED

FA

vFQ

A

QR

F2

vF2

ED

FV

vFV

V

F1

vF1

CB

FQ

vFQ

Q
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This determines the continuation string J K L V F G.

If the continuation string is to be produced one symbol at a time — as in the transformer
implementation in our TPF system — generating the first symbol J involves generating the
next field, F2, and unbinding it [property (26f-iii)] to get the first symbol of its value string
in the Q-region of the cue, uF2; this is then bound to the new instance of F2 in the A-region
of the cue [property (26f-ii)]. This is the first of our two generation operations: starting
the next field, NextField. The second operation, continuing a field that has already been
initiated — ContField — generates the next symbol in the current field: K. Choosing the
appropriate operation is a case of conditional branching conditioned on representational
structure [property (26f-i)].

ContField is in fact the operation performed by an induction head (Olsson et al., 2022):
predict that the symbol following some symbol Σ in the continuation will be of the same
type as the symbol following the most recent previous token matching the type of Σ. While
it is known how to implement ContField in a transformer using induction attention heads,
NextField is a considerably more abstract operation: predict that the field following Σ in
the continuation will be of the same type as the field following the previous occurrence of
Σ’s field type — within the example A-region, not the cue Q-region. Given the next field
type, generating the next symbol requires determining the value string for that field type —
within the cue Q-region, not the example Q-region.

To generate the next continuation symbol, the generation algorithm we give below
(Sec. 5.3.3) decides whether to apply NextField or ContField; for this, it must determine
whether the value string for the field currently being generated has been completed: if so,
NextField is called for; otherwise, ContField is needed. This is a structure-sensitive
choice [property 26f-i]. The results of processing the subconstituents (fields) of AR with
NextField and ContField are composed together in the field-sequence prescribed by the
parse structure of AR [property 26f-iv].

For NextField to generate the next field in the AR of C under construction, the
last-generated field must be matched with a field in the AR of the example X; the field
following that matching field within X gives the field type that needs to be generated next
in the continuation.

The algorithms we have previewed in this section as informal walk-throughs will be presented
formally below when we discuss the algorithmic level of TPF in Secs. 5 and 6. But first we
must formally present TPF at the highest level, the functional level.

4. TPF, functional level. A class of in-context learning tasks: templatic
generation

Thus the Swap task implicitly incorporates 11 of the 13 properties of symbolic computation
given in (26).5 This motivates the study of a class F of ICL functions including Swap which
we formalize in this section. F provides the functional-level description of the Transformer

5. Higher-level compositionality (26f-iv) across multiple templates given through multiple examples in
the prompt, and recursion (26e), are important properties to be incorporated in future work: see the
preliminary discussion in Sec. 9.3.1.
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Production Framework TPF we now develop. We call F templatic generation tasks: TGT.
(Recall Box 2.)

4.1 Templatic generation defined

Each input-output mapping in F defining an instance of our ICL templatic generation task
is generated from an instance of the structural template in (38).

(38) The prompt-continuation (input-output) structure of templatic generation F
S

C

AR

...

u···

C′
2

uC′
2

D′
1

uD′
1

C′
1

uC′
1

FA

uFA

QR

...

u···

C2

uC2

D1

uD1

C1

uC1

FQ

uFQ

X

AR

...

v···

C′
2

vC′
2

D′
1

vD′
1

C′
1

vC′
1

FA

vFA

QR

...

v···

C2

vC2

D1

vD1

C1

vC1

FQ

vFQ

The yield (sequence of terminal symbols) of the non-orange portion of (38) is the prompt
P : the concatenation of the symbol sequences vFQ vC1 · · · uFA. This is the input sequence
to the function f ∈ F being computed by our TPF system. The output f(P ) is the
continuation — the yield of the orange portion: uC′

1
uD′

1
· · ·.

(39) specifies the tree template depicted in (38). [In square brackets are comments
concerning the motivation for some of the specifications.] A formal grammar for the TGT is
provided in App. D.

(39) TPF at the functional level: the prompt-continuation (input-output) structure S

a. Region structure

i. S is a sequence of two subconstituents: the example (X) followed by the
continuation-cue (C). [A characteristic of typical ‘1-shot’ ICL tasks.]

ii. Each of X and C is a sequence of two subconstituents called regions: the
Q(uestion)-region (QR) followed by the A(nswer)-region (AR).

b. Field structure

i. Each region is a sequence of subconstituents called fields. A field may not
appear more than once in a region. The sequence of fields comprising a QR
constituent is the same for the QR within X and for the QR within C; the
same is true for the AR. [This is the sense in which the continuation follows
the template established by the example; the to-be-generated completion of
the AR within C consists of the same sequence of fields as that of the AR
within the example given in the prompt.]

ii. Fields fall into two classes: delimiters (D) and constituents (C).

iii. The sequence of fields constituting a region alternate between D and C fields.
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iv. The first field of a QR (resp. AR) is the delimiter field FQ (resp. FA).

c. Field values

i. A field can be viewed as a variable which takes a symbol string as its value.
Within any region, no symbol may appear more than once. [A provisional
assumption simplifying the matching and copying of symbol-string values
between regions.]

ii. Within X, we denote the value of any field F by vF ; within C, by uF . If F is
a delimiter field, we underline the value name (v or u).

iii. Within S, a given delimiter field has a fixed value. [Together with (39b-iii),
this assures that the delimiters can be used to parse out the strings that are
the varying constituent-field values.] The fixed value of FQ is always Q; of
FA, A.

iv. Within X, a given field type has a unique value (a symbol string) [i.e., the
same in QR and AR].

d. Field constraints

i. Within X, the constituent (non-fixed-value) fields comprising AR — call
them C′

k — are a subset of those comprising QR — Cj . Thus each C′
k field

in AR has the same constituent-field type as a corresponding field Cj in QR:
type(C′

k) = type(Cj) for some function φ : k 7→ j.

ii. It follows that vC′
k

= vCj where j = φ(k): the symbol string which is the
value of C′

k in AR is a repetition of the value in QR of the corresponding Cj

[it has been ‘copied’ from position j in QR to position k in AR].

iii. Note that φ need not be onto: a Cj in QR may be absent in AR. [The symbol
string vCj in the question QR has been ‘deleted’ from the answer AR.]

iv. As within X, within C, a given field type has a unique value. The values
of a given constituent-field type in X and in C must be different (but from
(39c-iii), the value of a given delimiter field type is the same in X and C —
i.e., it is fixed throughout S). [It follows that the to-be-generated value of
field C′

k in AR of the completion C — uC′
k

— is the given value of the field
Cj within QR of C — uCj — for j = φ(k).]

Here, and throughout the theory development in the text, we are considering ‘1-shot’
ICL in which the prompt provides a single example X of the target input-output template.
The ‘k-shot’ case is the simple generalization in which the structure S has not just one, but
a sequence of k examples X preceding the cue constituent C. Unlike many tasks explored
with ICL, in our task (which is NL-semantics-free, number-free, purely symbolic: Sec. 1.2), a
single example uniquely determines the correct continuation: so in developing the theory, we
put aside the additional complexities of multiple examples. While logically unnecessary for
a model that has mastery of the task, additional ‘shots’ may be helpful for trained models:
we explore this in App. J.
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4.2 Relevance of the Templatic Generation Task

We are studying how mechanisms within the transformer architecture enable advanced
symbol processing, and we have seen through the case study of Swap how the Templatic
Generation Task calls on most of the general capabilities involved in symbol processing.
But is this task, as formalized above, a task that transformer models can actually perform?
In this section we examine this question with respect to both pre-trained language-model
transformers and transformers trained from scratch to perform the task.

4.2.1 The TGT Dataset

In order to assess how baseline models train and perform on templatic generation tasks,
we created a synthetic dataset, generating prompts according to the TGT grammar and
constraints outlined in App. D. Each line in a dataset split file contains a prompt and
the associated correct completion. Note that, except where indicated otherwise, in this
dataset, within a constituent, each symbol is a “random-letter ‘word”’ (‘rlw’) — a random
2-letter sequence of lower-case letters; within delimiters, each symbol is an individual special
character — see (10) and illustrations below. (Recall our ‘NL-semantics-free’ approach,
Sec.1.2.) This dataset is publicly available on Hugging Face.6

The dataset consists of the following tasks:

Task Description

1 shot rlw each prompt is 1 example (Q/A, input/output, pair) + continuation-cue

2 shot rlw each prompt is 2 examples + cue

3 shot rlw each prompt is 3 examples + cue

5 shot rlw each prompt is 5 examples + cue

10 shot rlw each prompt is 10 examples + cue

1 shot eng symbols in constituents are English words (vs. 2-letter random sequences)

1 shot rlw 10x same as 1 shot rlw but with 10x as many training prompts

For each task, the splits shown in Table 1 are available. Each line of a file containing
a split contains a prompt/continuation pair generated by an associated prompt-template.
The prompt-template defines the number of constituents and delimiters, and their order of
appearance, in the Q and A of the examples given in the prompt. Within a split file, each
prompt/continuation line has 2-3 parts, separated by a <tab> character:

x a prompt
y the correct completion

info optional text identifying the example type (for possible filtering during training)

‘Echo’ prompts are used to introduce out-of-distribution vocabulary symbols to the
model (in the train split).

Echo prompt:

Q ZW A ZW . Q VI A <tab> VI . <tab> {‘‘type’’: ‘‘echo‘‘}

6. The Hugging Face URL will be provided on publication.
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Split Description

train contains 1, 2, or 4 constituents; each with 1, 2, or 4 symbols

dev contains 1, 2, or 4 constituents; each with 1, 2, or 4 symbols

test contains 1, 2, or 4 constituents; each with 1, 2, or 4 symbols

ood lexical the constituent symbol vocabulary is absent from training examples
(UPPER CASE 2-letter random sequences)

ood cons len 3 all template constituent values contain 3 symbols

ood cons len 5 all template constituent values contain 5 symbols

ood cons len 7 all template constituent values contain 7 symbols

ood cons len 10 all template constituent values contain 10 symbols

ood cons count 3 all templates have 3 constituents

ood cons count 5 all templates have 5 constituents

ood cons count 7 all templates have 7 constituents

ood cons count 10 all templates have 10 constituents

Table 1: TGT dataset splits

breakdown:

1 example Q-region: Q ZW

1 example A-region: A ZW .

continuation-cue: Q VI A

target continuation: VI .

prompt info: {‘‘type’’: ‘‘echo’’}

Here is a prompt/continuation line from the train split of the 1-shot rlw task:

Q oy xf kq be ‘ ? jp A jp = . Q jf ty zu np ‘ ? cx A <tab> cx = .

<tab> {‘‘cons_count’’: ‘‘Q2A1’’, ‘‘cons_len’’: ‘‘Q41.Q41’’}

breakdown:

1 example Q-region: Q oy xf kq be ‘ ? jp

1 example A-region: A jp = .

continuation-cue: Q jf ty zu np ‘ ? cx A

target continuation: cx = .

prompt info: {‘‘cons_count’’: ‘‘Q2A1’’, ‘‘cons_len’’: ‘‘Q41.Q41’’}

In the prompt string x, each example (‘shot’) begins with a “Q”, includes an “A”, and ends
with a period (“.”). At the end of x is a continuation-cue (beginning with a “Q” and ending
with an “A”), to be completed by the model. The ground-truth completion is contained in
the y string.

The above example was randomly generated using the following prompt template generated
from the TGT grammar in App. D:
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Model API Service Test Date Prompts Accuracy

gpt-4 OpenAI Sep-23-2024 100 0.75

llama-3.1-405b Together Sep-26-2024 100 0.60

gpt-4o OpenAI Sep-23-2024 100 0.57

claude-3-opus Anthropic Sep-26-2024 100 0.48

gemini-1.5-pro Google Sep-26-2024 100 0.48

01-mini OpenAI Sep-23-2024 100 0.45

claude 3.5 sonnet Anthropic Sep-26-2024 100 0.38

gemini-1.5-flash Google Oct-06-2024 100 0.23

o1-preview OpenAI Oct-06-2024 100 0.18

gpt-4o-mini OpenAI Sep-23-2024 100 0.12

llama-3.1-70b Together Sep-26-2024 100 0.12

llama-3.1-8b Together Sep-26-2024 100 0.05

Table 2: LLM Testing Summary

Q ⟨constituent 1 ⟩ ‘ ? ⟨constituent 2 ⟩
A ⟨constituent 2 ⟩ = .

The default size of a training split in tasks is approximately 280,000 prompts. The
1 shot rlw 10x training set has about 2.8 million examples.

4.2.2 Performance of pre-trained language models on templatic generation

For our LLM Transformer testing, we choose several popular models that we had access to
through various API services. We started by testing all of these models on the 1 shot rlw

task of the TGT dataset, using the test split.

The LLMs were fed a prompt from our TGT dataset, prepended with a system prompt
containing a basic instruction to complete the abstract pattern (see App. E). Each model
was tested using the specified number of prompts shown in Table 2.

These results show that pretrained transformer LMs can perform the Templatic Genera-
tion Task to varying degrees, but not even the best model exceeded 75% accuracy. This
speaks to the relevance of TGT for understanding the symbol processing capabilities of
pretrained transformer LLMs. The capability to perform TGT is present in LMs in some
form, but particularly as the templates become larger and the number of symbols in the
constituents grow, they struggle: there is certainly room for strengthening this capability
drawing on the insights from TPF: see Sec. 9.3.3. From the initial tests shown in Table 2,
we chose the best performing model, GPT-4, and then did a series of exploratory tests to
see how the performance varied under different task variants. See App. J for details.

4.2.3 Training models on templatic generation

Given our LLM testing, we know that pre-trained LLMs have the ability to solve the
templatic generation tasks to varying degrees, depending on the model. Can the ability to
solve these tasks be learned from scratch, even by smaller models? To find out, we trained
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from scratch on the TGT 1-shot task 6 basic sequence-to-sequence models listed in App. K.
The results are presented in Table 3. The case of ‘OOD Lexical’ was already discussed:
2-letter random uppercase symbols (RLW) were used as the values of constituents, having
been seen in the training set only in single-symbol ‘echo’ prompts. The ‘OOD ConLen 7’
test used prompts containing 1, 2 or 4 constituents, each comprising a length-7 (rlw) symbol
string: the models saw only constituent lengths of 1, 2, or 4 in training. The ‘OOD ConCnt7’
test used prompts containing 7 constituents (each comprised of 1, 2 or 4 symbols), while the
training set only contained prompts with 1, 2 or 4 constituents.

Model Train Dev OOD OOD OOD
Acc Acc Lexical ConLen 7 ConCnt 7

transformer 0.9838 0.8568 0.0052 0.6344 0.1828
nano gpt 0.9997 0.9997 0.0074 0.6908 0.2247
nano gpt attn only 0.9992 0.9989 0.0070 0.7118 0.3346
cnn 0.6284 0.4766 0.0000 0.0062 0.0025
lstm attn 0.6995 0.6432 0.0000 0.0000 0.0069
mamba 0.9980 0.9136 0.0137 0.0000 0.0739

Table 3: Results for 1 shot rlw task

These results show that transformers can learn to perform the in-distribution TGT
tasks directly, without LM training; other neural architectures, CNNs and GRUs, struggle,
although Mamba succeeds.

All models exhibit poor OOD lexical generalization, indicating that the knowledge
acquired during training is not of an abstract-pattern-based nature but instead tied rather
strongly to particular symbols seen.

On OOD generalization in the number of constituents (‘ConCnt 7’), only transformers
achieve modest success. The transformers’ OOD generalization is stronger in the length
of constituents (‘ConLen 7’), which is intuitively easier than increasing the number of
constituents in the template that must be extracted from the prompt and suitably arranged.

The superiority of transformers at OOD generalization is consistent with the hypothesis
that within the transformer architecture there are internal mechanisms that facilitate
templatic generation; the work here provides detailed and comprehensive hypotheses about
what exactly those mechanisms may be (Sec. 9.2) as well as suggestions for how the standard
transformer architecture can be enhanced to improve OOD generalization (Sec. 9.3.3).

To further understand how altering the TGT task would affect the performance of these
models, we also trained them on the other tasks in the TGT dataset. See App. K for details.

5. TPF, higher algorithmic level: the Production System Machine

Having documented the partial success achieved by transformers on the task defined by
the functional level description of TPF systems presented in Sec. 4 — the class F of
templatic generation functions instantiated in the TGT dataset — we now descend to the
algorithmic level, which actually contains two sub-levels that are formalized as two symbolic
abstract machines that compute the functions in F . Closest to the functional level is the
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Production System Machine PSM, which we present in this section. Beneath that, closer
to the implementation level, is the QKV Machine, presented in Sec. 6: like PSM, this is a
symbolic abstract machine, but it can be directly implemented in a type of discrete-attention
transformer network — DAT — defined in Sec. 7. In Sec. 6 we describe a compiler that takes
a program for the PSM, written in the Production System Language PSL introduced next,
and translates it to an equivalent program in QKVL, a language for expressing programs for
the QKVM. In Sec. 7 we then describe a second compiler that translates QKVL programs
into an equivalent neural network with isomorphic states and state dynamics. It is only at
this lowest level that numeric neural computation appears.

5.1 The PSM architecture

The symbolic processing in both PSM and QKVM consists of two phases: prompt processing
— i.e., parsing — followed by continuation generation. These phases are described in general
terms for PSM in (40) and (41).

(40) Production-System Machine state dynamics: Parallel processing of the prompt

a. Machine states

i. The state of the Production-System Machine is a sequence of cell states.

ii. A cell is identified by its value of the variable position (or p), a natural
number.

iii. A prompt containing P symbols is encoded in the cells in positions 1 through
P , the prompt cells; the completion will be encoded in the subsequent
completion cells.

b. Cell-state structure

i. Each cell has a state which is characterized by the values of a set of state
variables, including position (p) and symbol (s). The possible values of each
state variable form a discrete set.

ii. s[m] is the type of the symbol encoded in the cell with p = m.

iii. Other state variables are introduced below. Some of them are used to encode
the parse tree structure (38), as visualized in (42) — these are the structural
variables: region (r), field (f) and index (d).

iv. The state of a cell is a state structure encoding the values of the state
variables for that cell; some variables may have the null value nil. The space
of all possible state structures is the state-structure space SSS.

v. Notation. For any state structure S ∈ SSS, let the value of state variable x
in S be denoted S.x. When S is understood, we abbreviate S.x = a to x : a.
If S has, say, two state variables with non-null values, S.x = a and S.y = b,
we abbreviate S itself to x : a, y : b.

c. Layer structure

i. The dynamics of the cells is unrolled in time, so that for each step of
computation there is a layer of cells.
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ii. At layer 1, each cell’s state includes its position value and a value for symbol
that is supplied by the prompt.

iii. (42) depicts the state of the machine at a single time step, i.e., a single
layer. Each state variable is represented as a row containing the values of
the variable across the cells in that layer. The state structure for the first
cell is shown in (43).

d. Production System Language, PSL

i. A particular PS Machine is specified by a program in the language PSL: this
is a sequence of L productions, with production ℓ specifying the updating
process for layer ℓ. Each layer is updated according to a single production.

ii. The prompt cells in a given layer are all updated in parallel (i.e., not
autoregressively) by the production corresponding to that layer.

iii. Production ℓ is specified in PSL by: (i) a Condition, which defines require-
ments on the values of state variables in layer ℓ cells in order to allow the
production to execute; and (ii) an Action, which assigns values to state
variables of cells to be set in layer ℓ+ 1.

iv. Production Conditions and Actions deploy two meta-variables n and N .

➀ When production ℓ executes, for each cell position N it sets values for
state variables in cell N in layer ℓ+ 1, using the values of variables in
cell n of layer ℓ (where possibly n = N).

➁ A production can only execute when n and N satisfy its Condition.
There is no requirement of causal interaction, n < N [but see (67d)].

➂ When a production executes to update a cell N , if multiple positions n
satisfy the production’s Condition, the least value of n is used [but see
(67e)]. If no position n satisfies the Condition, no Action is taken.

➃ If Production ℓ does not assign a value to a given state variable in cell
N , that variable has the same value in layer ℓ+ 1 as it did in layer ℓ.

v. A sub-sequence of productions can constitute an repeat block, in which case
the layers corresponding to the productions in that block are evaluated in
sequence repeatedly until a termination condition specified for that block is
met (e.g., no further changes in state variables).

(41) Production-System Machine state dynamics: Autoregressive generation of the con-
tinuation

a. Given a prompt of length P , the level-1 states of cells 1, ..., P are determined
by the prompt (40c-ii). These are processed in parallel according to (40). The
level-1 state of cell P + 1 is set equal to the level-L state of cell P (except that
p := P + 1). [Note that, except for p, the entire state structure — not just the
value of symbol — is copied from the final state of cell P to the initial state
of cell P + 1. The responsibility of cell P is to compute the values of all state
variables (except p) for the next cell.]

b. The states of the continuation cells following the P prompt cells are updated in
sequence: first, the position-P+1 cell is updated repeatedly, through all L layers
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of the machine corresponding to the L productions of the program; these layers
operate just as they do for the prompt cells.

c. The level-1 state of cell P + 2 is set equal to the level-L state of cell P + 1 (except
that p := P + 2), and then cell P + 2 is processed through all L layers. This
process iterates until a termination condition is met (e.g., the generation of a
special termination symbol).

d. The sequence of level-1 values of the variable symbol for the continuation cells
constitute the continuation string: the output of the function being computed.

5.2 Swap in the PSM

In the PSM, the hierarchical structure (38) is encoded as in (42), with each row showing the
values of the state variable named at the left. The state structure of the first cell is shown
in (43).

(42) PSM representation of the parse (35) of the prompt (29a)

r XQ XQ XQ XQ XQ XQ XA XA XA XA XA XA CQ CQ CQ CQ CQ CQ CQ CA

f FQ F1 F1 FV F2 F2 FA F2 F2 FV F1 F1 FQ F1 F1 FV F2 F2 F2 FA

s Q B C V D E A D E V B C Q F G V J K L A

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

d 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 2 0

(43) The state structure for the position-1 cell in (42). (
... stands in for other state

variables not shown in (42).)

r: XQ
f : FQ
s: Q
p: 1
d: 0

. . . :
...

The hierarchical structure encoded explicitly in the tree (38) is now encoded implicitly
in the spans of the values of the structural variables : that the substring B C is the value of a
field constituent (of type F1) is encoded by the field variable field (or f ) having the same
value (F1) for both B and C (and a different value for the preceding and following symbols).
Similarly, that the prompt prefix Q A B V C D is the value of a region constituent is encoded
by the region variable region (or r) having the same value, XQ, for all the symbols in that
prefix. When implemented below in a transformer, this is the method for encoding hierarchy
proposed in Hinton’s (2023) GLOM model. (Extending this scheme to enable recursive
structure faces a number of challenges, but see Sec. 9.3.1.) Note that we have not explicitly
encoded the top-level constituents X and C here, as they are not useful for the algorithm we
present below; rather, the Q- and A-regions of X are now called XQ and XA, while those of
C are now CQ and CA.

The final structural variable, index (d), denotes the position of each symbol within its
string (44).
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(44) a. The values of index — the string-internal positions of field values — are shown
as 0, 1, 2, ... in (42) (see J K L).

b. However, our algorithms will only need the binary distinction between field-initial
(d = 0) and non-field-initial, d ̸= 0; therefore, henceforth we will simply index all
non-field-initial symbols with d = 1 — e.g., see J K L in (45).

We need a parsing algorithm to generate the encoded hierarchical structure of the input
prompt in (42), and we need a generation algorithm to use this parse to produce the output
continuation string: these are respectively presented in Secs. 5.4 and 5.3. Although logically
prior, because of its complexity, we postpone discussion of the parsing algorithm until after
we present the generation algorithm.

5.3 Generation algorithm GEN in the Production-System Language PSL

In Sec. 3.3.2 we informally introduced the two operations used during generation of the
continuation string: ContField and NextField. Which of these is executed depends on
whether the most-recently-generated symbol is final in its field (calling for NextField) or
not (calling for ContField).

5.3.1 ContField

We discuss ContField first because it is simpler than NextField, although we need to
jump ahead a step into the generation process to reach a point where ContField is the
appropriate operation. So suppose the first continuation symbol J has just been generated
(along with its structural variable values f = F2, r = CA, d = 0). J is not the final symbol
in its field F2, so the next symbol must be generated by ContField, which performs the
actions in (46); see the visualization in (45). This operation is justified by (39d-iv), which
requires that — in the notation of (37) — uF2, the value of field F2 within CA, must equal
uF2, the value of field F2 within CQ.

(45) Use of ContField to continue generating the current field’s value string

r XQ XQ XQ XQ XQ XQ XA XA XA XA XA XA CQ CQ CQ CQ CQ CQ CQ CA CA CA

f FQ F1 F1 FV F2 F2 FA F2 F2 FV F1 F1 FQ F1 F1 FV F2 F2 F2 FA F2 F2

s Q B C V D E A D E V B C Q F G V J K L A J K

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

d 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1

n0 n N

(46) ContField in action

a. Current most-recently-generated symbol: J in position N = 21; s[N ] = J

b. Match to symbol type J in CQ: position n0 = 17; s[n0] = s[N ] (where n0 is not
field-final)

c. Next position: n = n0 + 1 = 18

d. Symbol at position n: s[n] = K

e. Update symbol[N ] to K for subsequent propagation (41a) to the next position
N + 1 = 22: set s[N ] = s[n] = K
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f. Update structural-variable values at position N for subsequent propagation to
position N + 1: set f [N ] = f [n] = F2; r[N ] = CA, d = 1

Since n0 = n− 1, (46) can be compactly expressed as the condition-action production
rule (47).

(47) ContField as a production operating on state variables

a. Condition: n,N satisfy s[n− 1] == s[N ] and r[n− 1] == CQ
(where n− 1 is not field-final)

b. Action: set s[N ] := s[n]; f [N ] := f [n]; r[N ] := CA, d[N ] := 1

As pointed out above, this describes the effect of a transformer ‘induction head’ (Olsson
et al., 2022).

Note that the condition that n − 1 not be a field-final position is equivalent to the
condition that n not be field-initial; this can be simply expressed as d(n) = 1: recall that
within the symbol strings that are values of fields, the index 0 labels the initial symbol, with
index 1 labelling the non-initial symbols (45). The production (47) copies a symbol from
within the same field-value string as the symbol in CQ that matches the current symbol
s[N ] in CA: this copied symbol cannot be field-initial, so it necessarily has d = 1.

The production (47) makes reference to s[n− 1] in its condition, and s[n] in its action;
these symbols are used to update symbol[N ] to then be used to generate s[N+1]. Throughout
the paper, N will always denote the position being updated by a production, with n denoting
a position containing information needed to perform the update (with possibly n = N).
Note that a given production applies in parallel to update all positions N , and for each N ,
the relevant corresponding position n is determined independently of the other positions
being updated.

In the transformer implementation below, position N will attend to position n to retrieve
the information needed to generate the next symbol; rather than having to attend additionally
to position n−1 to implement the condition (47a), it is convenient to localize all the necessary
information in one position, n. To do this we introduce the auxiliary variable s∗, setting
s∗[n] = s[n− 1]; the condition ‘s[n− 1] == s[N ]’ now becomes ‘s∗[n] == s[N ]’ and now all
needed information can be gathered at n.

More generally, for each state variable x we will define the related variable prev x, x∗

for short, defined by x∗[n] = x[n − 1]. Further auxiliary variables will also be needed;
corresponding to state variable x will be x ‵, assigned values by the action of productions.

When a production executes at step ℓ of the computation, the production reads values
of state variables at step ℓ and the Action writes the values of variables at step ℓ + 1.
Together with the use of the auxiliary state variables introduced above, this means that the
production (47) can be written in what we’ll call its Transformed notation. The Transformed
version of the production (47) can be written solely in terms of N (which, in the transformer
implementation, will issue the appropriate query) and n (which will carry the appropriate
matching key) (48).

(48) ContField as a Transformed production

a. Condition: n,N satisfy s∗(ℓ)[n] == s(ℓ)[N ], r∗(ℓ)[n] == CQ, d(ℓ)[n] == 1

b. Action: set s(ℓ+1)[N ] := s(ℓ)[n], f (ℓ+1)[N ] := f (ℓ)[n], r(ℓ+1)[N ] := CA, d(ℓ+1)[N ] := 1
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Since, for step ℓ, variable values are always read from the step-ℓ state structure and
written to the step-(ℓ+ 1) state structure, these step values can be left implicit; (48) can be
written in the abbreviated form (49).

(49) ContField as a Transformed production, abbreviated: ContField

a. Condition: n,N satisfy s∗[n] == s[N ], r∗[n] == CQ, d[n] = 1

b. Action: set s[N ] := s[n], f [N ] := f [n], r[N ] := CA, d[N ] := 1

5.3.2 NextField

Because the newly-generated symbol K does not complete its field F2, the next step of
generating the continuation also needs ContField; this generates the next symbol L (along
with its structural-variables’ values).

L completes the F2 field, so generating the following symbol, V, requires NextField.
Its action is spelled out in (51), visually supported by (50).

(50) Use of NextField to start the generation of the next field’s value-string

r XQ XQ XQ XQ XQ XQ XA XA XA XA XA XA CQ CQ CQ CQ CQ CQ CQ CA CA CA CA CA

f FQ F1 F1 FV F2 F2 FA F2 F2 FV F1 F1 FQ F1 F1 FV F2 F2 F2 FA F2 F2 F2 FV

s Q B C V D E A D E V B C Q F G V J K L A J K L V

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

d 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0

n1 n2 n N

(51) NextField in action

a. Current most-recently-generated symbol: L in position N = 23; s[N ] = L, with
field f [N ] = F2

b. Match to field F2 in XA, field-final position: position n1 = 9; f [n1] = f [N ]
(where n1 is field-final)

c. Next position: n2 = n1 + 1 = 10

d. Field at position n2: f [n2] = FV

e. Match to field FV in CQ, field-initial position, n: f [n] = FV; n = 16 (where n is
field-initial)

f. Symbol at position n: s[n] = V

g. To subsequently generate symbol V for the continuation-string’s next position
N + 1 = 24, update s[N ] = s[n] = V

h. To subsequently generate structural-variable values for position N + 1, update
f [N ] = f [n] = FV; r[N ] = CA; d[N ] = 0

(51) can be compactly expressed with two productions (52)–(53), communicating through
a new variable f ‵ that stores the next-field name (FV here) in the state structure at position
N . Note that the condition “n1 is field-final” is equivalent to “n1 + 1 = n2 is field-initial”,
i.e., d[n2] = 0; “n is field-initial” is simply d[n] = 0.

38



Mechanisms of Symbol Processing in Transformers

(52) NextField as a sequence of productions: first production

a. Condition: n2, N satisfy f [n2 − 1] == f [N ], r[n2 − 1] == XA, d[n2] == 0

b. Action: set f ‵[N ] := f [n2]

(53) NextField as a sequence of productions: second production

a. Condition: n,N satisfy f [n] == f ‵[N ], r[n] == CQ, d[n] == 0

b. Action: set s[N ] := s[n], f [N ] := f [n], r[N ] := CA

Note that the condition “n1 = n2 − 1 is in region XA” is equivalent to “r∗[n2] = XA”.
Because condition-matching of each production at each position N operates independently
within its own layer, the dummy variable n2 in (52) can be replaced with n; at any position,
when the first production executes, this n will be bound to a position independently of
the position n appearing in (53) that will be bound when the second production executes.
Transforming the productions (52)–(53) then yields (54)–(55).

(54) NextField as a sequence of Transformed productions: NextField1

a. Condition: n,N satisfy f∗[n] == f [N ], r∗[n] == XA, d[n] == 0

b. Action: set f ‵[N ] := f [n]

(55) NextField as a sequence of Transformed productions: NextField2

a. Condition: n,N satisfy f [n] == f ‵[N ], r[n] == CQ, d[n] == 0

b. Action: set s[N ] := s[n], f [N ] := f [n], r[N ] := CA, x[N ] := 1

The NextField productions so far cover the case shown in our working example (50).
There is another case however, which will explain the appearance of x in (55b): when XA
includes a delimiter that is not present in XQ and therefore not in CQ. This occurs when the
Answer inserts fixed material absent in the Question, as in the Active → Passive template:
x V y 7→ y was V by x. In this case, the last-generated continuation symbol’s field must
be found in XA rather than in CQ. Thus another conditional branch is required: if the
NextField2 production fails to execute (no matching field in CQ) then we need to execute
NextField3, which is identical to nextField2 except that CQ is replaced by XA:

(56) NextField as a sequence of Transformed productions: NextField3

a. Condition: n,N satisfy f [n] == f ‵[N ], r[n] == XA, d[n] == 0, x[N ] == 0

b. Action: set s[N ] := s[n], f [N ] := f [n], r[N ] := CA

The branch variable here is x temp (x for short), initialized to 0 but set to 1 if NextField2
executes; this blocks NextField3 because of its Condition x[N ] == 0.

5.3.3 The generation algorithm GEN

The core of the generation algorithm GEN is provided by the four productions ContField
(47), NextField1 (54), NextField2 (55), and NextField3 (56). However there is a conditional
branch here: IF the most-recently-generated symbol is not field-final, THEN ContField
should execute (its Condition will be satisfied in that case), but NextField should not execute
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(even if its Condition as currently stated is satisfied); ELSE the NextField productions should
execute.

We implement this branching through a ‘branch’ variable — an additional state variable
end (e for short), which is initialized in each cell to end := 0, and set to value 1 in cell N
by the execution of ContField in that cell; the Conditions of the NextField productions are
supplemented to include end[N ] == 0. This ensures that the NextField productions will not
execute if ContField has.

This gives the core of GEN in PSL as the sequence of productions (57) – (60).

(57) ContField: final form [production G1 of (100)]

a. Condition: n,N satisfy s∗[n] == s[N ], r∗[n] == CQ, d[n] = 1

b. Action: set s[N ] := s[n], f [N ] := f [n], r[N ] := CA, d[N ] := 1, e[N ] := 1

(58) NextField1: final form [production G2 of (100)]

a. Condition: n,N satisfy f∗[n] == f [N ], r∗[n] == XA, d[n] == 0, e[N ] == 0

b. Action: set f ‵[N ] := f [n]

(59) NextField2: final form [production G3 of (100)]

a. Condition: n,N satisfy f [n] == f ‵[N ], r[n] == CQ, d[n] == 0, e[N ] == 0, x[N ] == 0

b. Action: set s[N ] := s[n], f [N ] := f [n], r[N ] := CA, x[N ] := 1

(60) NextField3: final form [production G3’ of (100)]

a. Condition: n,N satisfy f [n] == f ‵[N ], r[n] == XA, d[n] == 0, e[N ] == 0, x[N ] == 0

b. Action: set s[N ] := s[n], f [N ] := f [n], r[N ] := CA

In addition to these four productions, additional productions are required for book-
keeping purposes. One (production G0) initializes end to 0, and the others (production
Gpre-1, Gpre-2) update the prev v (v*) state variables to correctly provide the value of
v[N −1] to each cell’s v∗[N ] state variable, after a production has altered the values of v. All
7 productions constituting GEN are given a complete PSL specification in (100) in App. A.

We now take up the parsing algorithm, which is presented below in (61); this also
omits the book-keeping productions such as those for updating the prev v variables after v
values have changed. These are included in the full 24-production PSL program for PARSE
presented in (99) in App. A.

5.4 The parsing algorithm PARSE

The generation algorithm relies heavily on the structural variables region, field, index (r, f, d):
these state variables encode the parse of the input produced by an algorithm PARSE that
we now discuss. PARSE is presented descriptively in (61).

(61) Parsing algorithm: operations on structural variables
Showing for each production: its goal (with a pointer to its role in the walk-through
in Sec. 3.3.1), the specification(s) in (39) justifying it, its number P#, and a verbal
description
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Goal (39) P#Description

initialize variables mark region, type as ‘un-
set’; give

0 everywhere set region = R (r:R), type = T (t:T), index = 1 (d:1)

each cell a unique field
value

everywhere set field = position (f:p)

identify regions (33) mark start of Q-regions a 1a mark position 0 with r:XQ, f:FQ, t:D

b-i,iv 1b mark start of CQ at repeat of symbol starting XQ with r:CQ, f:FQ,
t:D

fill in Q-regions a 2a spread r:XQ rightward to 1st delimiter (t:D), where field CQ starts
[now all Ds are region-Ds; region-internal Ds are inserted later; ‘XQ’
includes XA for now]

” 2b spread CQ rightward until end of prompt [‘CQ’ includes CA for
now]

mark start of A-regions a-ii,b-iv3a mark start of XA region at A in current ‘XQ’ region with r:XA,
f:FA, t:D

” 3b mark start of CA at A in current ‘CQ’ region with r:CA, f:FA

fill in A-regions a-ii 4 spread r:XA right until first t:D, where field CQ starts

identify region-
internal delimiters,
constituents

identify region-internal de-
limiters

c-i,iii 5a mark a symbol in XQ that is repeated in CQ as a (region-internal)
delimiter: t:D [non-causal]

(35) ” 5b mark a symbol in CQ that repeats a symbol in XQ as a delimiter,
same field: t:D

(34) ” 5c mark a symbol in XA that repeats a symbol in CQ as a delimiter,
same field: t:D

assign fields 1 (35) c-i,iv 6 identical untyped symbols in X have the same C field

set remaining types identify remaining delim-
iters

b-ii 7 mark all unset types in XA as delimiters: t:D

identify constituents 7’ mark all remaining unset types as constituents: t:C

assign fields 2 (35) b-i 8 XQ (QR in X) and CQ (QR in C) have identical field-sequences:

a constituent field following a particular delimiter field in CQ is the
same as the one following the same delimiter field in XQ

b-iii 9 constituent fields change only at delimiters

assign indices (44) 10 at a change in field: d:0

mark end of parsing 11 at end of prompt, set parse=0: a:0

Note that the field names F1, FV, F2 which we have used previously are just more
readable versions of the names assigned by this algorithm. For instance, since all field values
are initialized to equal the position value (Production P0), the symbol B in position 2 of the
prompt in (42) is initialized to f = 2, and never changed by the algorithm. Thus F1, FV, F2
above correspond to the values f = 2, 4, 5 resulting from the algorithm (on this particular
prompt). The names given to region-delimiter fields above (FQ, FA) are, however, those
used by the algorithm.

The ‘P#’ labels 0, 1a, 1b, . . . , 11 in (61) identify particular productions in the parsing
algorithm: they are given in App. A. Here we illustrate with three of these 16 productions:
one typical, and two with distinguishing features.

Production P6 is a typical, simple production, virtually a literal translation from the
English description to the formal expressions.

(62) Production P6. Identical symbols are contained in the values of identical fields.

a. Condition: n,N satisfy s[n] == s[N ]

b. Action: set f [N ] := f [n]

The intended effect is that when two symbols at positions j and k match, where j < k,
the value of f at the earlier position j is copied rightward to become the new value of f at
the later position k.

Note that when the same symbol appears in cells j and k, with j < k, P6’s condition is
satisfied under multiple bindings of n and N . Suppose the fields for these positions are, for
concreteness, f [j] = F1 and f [k] = F2. Then the four n,N pairs meeting P6’s Condition
are shown in (63).
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(63) Effect of f [N ] := f [n] when j < k, f [j] = F1, f [k] = F2

n N effect if production executes comment
a. j k set f [k] := F1 = f [n] = f [j] desired effect
b. k k set f [k] := F2 = f [n] = f [k] no effect
c. k j set f [j] := F2 = f [n] = f [k] undesired effect
d. j j set f [j] := F1 = f [n] = f [j] no effect

According to ➂ of (40d-iv), when a cell N is updated, it can only read information from at
most one cell n (possibly itself); if there are multiple n that meet the condition for updating
N , the lowest-valued n will be used. When updating N = k, the lowest-valued n meeting
the condition will be n = j < k, so case a of (63) will be the operative one, and the desired
effect will occur. When updating N = j, the lowest-valued n meeting the condition will
again be n = j < k, case d: this re-assigns F1 to f [j], yielding no effect. Crucially, case
d blocks the undesired effect of leftward copying from k to j that would result if c rather
then d were the operative bindings. Thus the lowest-match condition ➂ of (40d-iv) forces
information to only travel from earlier to later positions when P6 executes.

The third column of the table in (61), headed ‘(39)’, identifies for each production the
clauses in the definition of our function class F that license that production. For this
production P6, this is (39c-i,iv), which state that ‘no symbol may appear in the value of
more than one field type’ and ‘within X, a given field type has a unique value’.7

An exceptional production is Production P5a.

(64) Production P5a. Mark a symbol in XQ that is repeated in CQ as a (region-internal)
delimiter: t:D.

a. Condition: n,N satisfy r[n] == CQ, r[N ] == XQ, s[n] == s[N ]

b. Action: set t[N ] := D

(64) is the only production requiring N < n: the to-be-updated position N , in region XQ,
precedes the position n in CQ which matches the symbol s[N ] and hence determines that N
is a delimiter position. In the implementation, this will require non-causal (forward-looking)
attention. All other productions involve only causal (backward-looking) attention.

An atypically complex production is Production P8.

(65) Production P8. XQ and CQ have identical field-sequences: a constituent field fol-
lowing a particular delimiter field in CQ is the same as the one following the same
delimiter field in XQ.
a. Condition: n,N satisfy r∗[n] == XQ, r[n] == XQ, t∗[n] == D, t[n] == C,

r[N ] == CQ, t∗[N ] == D, t[N ] == C, f∗[n] == f∗[N ]
b. Action: set f [N ] := f [n]

7. The qualifier ‘within X’ here raises a subtlety in the action of this production. Two symbols can match,
meeting P6’s Condition, in two cases. If one of the symbols is contained in the value of a constituent
field, then the two matching symbols must both occur in X, because the values of constituent fields in C
must be different from those in X (39d-iv). If a symbol is contained in the value of a delimiter field, it
need not lie within X, but the matching symbol must also be within the value of the same delimiter field,
as these fields have a constant value throughout the prompt (39c-iii). P6 is actually used to handle both
these cases.
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(65) in fact has the most complex Condition of all the productions for parsing and
generation; the complexity of the formal expressions follows that of the English description.
This is the core production enabling the powerful symbolic operation of whole-constituent
copying (26a.i).

5.5 Combining PARSE and GEN

The first goal of the ICL program is to parse the prompt; then the second goal is to generate
a continuation. As in standard in production systems (Jones & Ritter, 2003), there is a state
variable parse (a for short) encoding the current goal, which the Condition of productions
evaluates. parse = 1 signals that the current goal is to execute the productions comprising
PARSE; parse = 0 signals the goal to execute GEN. So every production in the PARSE
program includes in its Condition a == 1. The final production of PARSE (P11) sets a := 0,
which is required by the Conditions of all the productions of GEN. This production P11
only applies to the final prompt cell (housing the last symbol of the prompt); a == 0 is
then propagated to the first generation cell and from there to all subsequent generation cells
via the autoregressive updating of the generation cells (41). The end of the prompt is not
marked by an end-of-prompt symbol; rather, within the final prompt cell (holding the last
symbol of the prompt), a dedicated state variable z is set to the symbol EOP in the input.

5.6 The PSL programming language

Not just those exhibited above, but in fact nearly all the productions we use for parsing and
generation share the form shown in (66); for the other productions, see (67).

(66) For some state variables x, y, z, u, v, w and constant field values CONSTi, 1 ≤ i ≤ 3:

a. Condition: n,N satisfy x[n] == CONST1, x[n] == y[N ], z[N ] == CONST2 . . .

b. Action: u[N ] := CONST3, v[N ] := w[n] . . .

The ellipses ‘. . .’ indicate that any number of equality tests (. . . == . . .) of the forms
shown for the Condition, and any number of assignment statements (. . . := . . .) of the forms
shown for the Action, are permitted.

Note that the condition x[N ] == y[N ] is not included among the possible Conditions
in (66), but that effect can be achieved by combining the two allowed Conditions x[n] ==
y[N ], p[n] == p[N ], as in production P10 in (99).

Thus the core of a PSL program is a sequence of productions of the form (66). Implement-
ing such a program in a transformer network requires only implementing each production as
a transformer layer, the layers sequenced to match the sequence of productions.

Additional expressiveness needed for our ICL programs is also provided by PSL (67).

(67) Additional expressiveness in the PSL programming language

a. Inequality tests . Conditions can include inequality tests: x[N ] != CONST, as in
production P1b in (99), or x[N ] != y[N ], as in production P10 in (99), or x[n]
!= CONST, as in production G1 in (100).

b. Operators in Conditions. Conditions can include operators such as F in “x[n] ==
y[N ]@F”, i.e., x[n] equals the image of y[N ] under the mapping F . These
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operators map variable values into other values, such as the function Fpos increment

that increments by 1 any value of p, the position index, as in the production
Ppre-1 in (99).8

c. Repeat blocks. A sequence of consecutive productions can be executed repeatedly
until some condition (e.g., no state change, or a requirement on state variables
with the form of a production’s Condition) is achieved. This is illustrated in (99)
by the block containing the two-production sequence Ppre-2a, P2a.

d. Causal propagation. Optionally, a production may be specified as requiring
‘causal’ information flow: n < N .

e. Rightmost selection. Optionally, a production may specify that among positions
n whose keys tie for a perfect match with a query, the rightmost (rather than
the default case, leftmost) position is selected for value propagation. (

f. ‘In’ construction. Rather than specifying a single value for a variable in a
production’s condition, a construction ‘x in [x1, x2, . . . ]’ can be used to identify
multiple matching values. A ‘not in’ construction is also available.

In the code base, a default production is specified as where <condition>: <action>.
For the exact syntax, and specification of the optional features in (67), see the formal
grammar for PSL provided in App. F.

6. TPF, lower algorithmic level. The QKV Machine: Symbolic attention

6.1 The QKVM architecture

As shown in the preceding section, based in symbolic-AI-style production system computation,
the PSL language can be straightforwardly deployed to write programs for the PSM to perform
both the parsing and generation facets of ICL. To bridge to the level of implementation
in a transformer neural network, however, we need another abstract machine closer in
architecture to the transformer itself: this machine — the QKV Machine — uses query-
key attention to update machine states. Like the PSM, however, it is purely symbolic.
In this section, we will present a compilation process for translating PSL programs into
QKVM programs. In the next section, another compiler will be presented that translates a
particular PSM into a numerical machine that uses neural computation: an attention-only
transformer network using a form of discrete attention and discrete state normalization, the
Discrete-Attention-only Transformer, DAT.

(68) QKV Machine state dynamics: Parallel processing of the prompt

a. Machine states

i. Like the PSM, the QKV Machine state is a sequence of cell states. But now,
each cell state is specified by the values of five cell attributes: query, key,
value (q, k, v), as well as input (i) and output (o). The value of an attribute
is a structure in SSS: the same set of state variables as for the PSM, each
assigned a particular value (possibly nil).

8. For implementation, we will require that F be implementable as a linear transformation; this is always
possible when the vectors embedding the values of y are linearly independent, as they are when they are
one-hot.
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ii. Notation. Structures in SSS are specified as they are for the PSL. For a
given cell, the SSS-valued attribute query, for example, might have the value
notated “r:CA, f :FV” — the state structure S ∈ SSS with two non-null
state-variable values, S.r = CA and S.f = FV.

b. Layer structure: as for the PSM

i. The cell dynamics is unrolled in time, so that for each step of computation
there is a layer of cells.

ii. In layer 1, the input for cells containing the prompt symbols — the prompt
cells — are assigned appropriate values for position and symbol, the latter
taken directly from the prompt string.

iii. The prompt cells are all updated in parallel; the structure in SSS assigned to
the input attribute to the cell in position p of layer 2 is the structure assigned
to the output attribute for the cell in position p of layer 1. This is repeated
for all layers.

iv. A sub-sequence of layers can constitute a repeat block, in which case the
layers in that block are evaluated in sequence repeatedly until a termination
condition specified for that block is met.

c. Cell-state updating
Rather than by productions, in the QKVM, cell updates are performed by a
uniform discrete attention process:

i. The structure assigned to the output attribute of a cell N is determined by
(i) input[N ] and (ii) the structure assigned to the value attribute of a cell n
with a key that matches the query of cell N :

query[N ] matches key[n] ⇒ output[N ] := value[n] ▷+ input[N ].

ii. (definition of ▷+) output[N ] is a state structure in SSS which is the same as
input[N ] except that the values of state variables that have been assigned
non-null values in the structure value[n] overwrite whatever values these
variables may have had in input[N ].

iii. A query structure matches a key structure if, for every state variable x with a
non-null value v in query, the value of x in key is v. (Any additional variables
with non-null values in key are ignored.)

iv. When a cell N is updated, if multiple positions n have a key that matches cell
N ’s query, the least such value of n is used; if no position n has a matching
key, no Action is taken.

d. QKV Language, QKVL

i. A particular QKV Machine is specified by a program in the language QKVL:

this specifies, for each layer ℓ = 1, ..., L, a map W
(ℓ)
q from SSS to SSS which

takes the input structure for a cell and maps it to the query structure for

that cell. All cells in layer ℓ use the same map W
(ℓ)
q . There are corresponding

maps W
(ℓ)
k and W

(ℓ)
v mapping from the input to key and value.

ii. W
(ℓ)
q (and likewise W

(ℓ)
k and W

(ℓ)
v ) is specified by identifying, for some set of

state variables, what value those variables take in the SSS state structure
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q(ℓ)[N ]. These values are specified in terms of the values of state variables
in i(ℓ)[N ]. For example, if the space of possible values Vx, Vy for the state
variables x and y are the same, V , the value of x in q(ℓ)[N ] might be specified
as the value of y in i(ℓ)[N ]: q(ℓ)[N ].x = i(ℓ)[N ].y When it is understood that
it is the level-ℓ state structure of q that is being specified, we abbreviate this
to x : y.

iii. QKVL allows specifications of the form q(ℓ)[N ].x = F
(
i(ℓ)[N ].y

)
for some

specified function F on the value-space V . (Also written x : y@F .) (E.g.,
for y = p, q(ℓ)[N ].x = Fpos increment i

(ℓ)[N ].p where Fpos increment increases by
1 any position value for p.)

iv. QKVL also allows inequality specifications of the form q(ℓ)[N ].x != i(ℓ)[N ].y;
this entails that q does not match any key k for which k.x = i(ℓ)[N ].y,
but otherwise the value of k.x is ignored in evaluating a match. Similarly,
q(ℓ)[N ].x != xk is permitted, with xk a fixed possible value of x.

v. See (70) for further discussion of QKVL.

(69) QKV Machine state dynamics: Autoregressive generation of the continuation [as for
PSM (41)].

a. Given a prompt of length P , the level-1 states of cells with p = 1, ..., P are
determined by the prompt (68b-ii). These are processed in parallel according to
(68). The continuation cells are updated autoregressively. The level-1 state of
cell P + 1 is the level-L state of cell P (except that p := P + 1). The values of
all state variables (except p) are copied from P to P + 1, not just the symbol
variable s.

b. Cell P + 1 is processed through all L layers, and then the level-1 state of cell
P + 2 is set equal to the level-L state of cell P + 1 (except that p := P + 2). This
process iterates until a termination condition is met (e.g., the generation of a
special termination symbol).

c. The generated continuation string is read from the level-1 continuation cells as
the sequence of values of input.symbol.

6.1.1 The QKV programming language, QKVL

(70) QKVL Programming Language

a. For a given layer ℓ, specify each of the q/k/v structures in VSSS via instructions
of the form target-variable : source-variable, such as

• x : y

which means that for any cell, in the q/k/v structure being specified, the variable
x is given the value that variable y has in the input structure for that cell, or

• x : xi

which means that x is assigned the fixed value xi. This specifies the mappings

W
(ℓ)
q/k/v of (68d).

b. More general specifications are also possible:

• x : y@F
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which means that x is assigned the value F (input.y) where F is a function over the
shared space of possible values for x and y that is defined in a library accessible
to QKVL (68d.iii). And

• x != xi

means that the specified state structure will match any value of x except xi
(68d.iv).

c. Note: In PSL, expressions such as “x[n] : y[N ]” make reference to the values
of the variables x, y at two locations n,N ; but in QKVL code, the instruction
“x : y” references the values of both variables at the some location. The y value is
taken from the input to a cell, and this is assigned to the value of x in that cell’s
query, key, or value structure, whichever is being specified by the instruction.

In the code base, a QKVL program is a description of QKVM layers, in the JSON data
format. At the highest level, it is an array of layers. Each layer is a Python dictionary
with the fields “layer comment” (a text description of the layer’s purpose), “causal attn”
(a boolean specifying whether causal attention is enabled for the layer), “right match” (a
boolean specifying whether right-most attention selection should be applied to the layer), and
most crucially “weights” — a dictionary describing the three mappings Wq,k,v of (68d-i) which
will next be compiled to determine the numerical weights in a layer of a DAT transformer
implementing the QKV program. These mappings are specified by instructions of the form
given in (70).

An example layer dictionary is: {‘‘layer comment’’: ’’// parse step pre 1. set

prev position and prev symbol’’, ‘‘causal attn’’: false, ‘‘right match’’:

false, ‘‘weights’’: {‘‘q’’: {‘‘p’’: ‘‘p’’, ‘‘a’’: ‘‘a’’}, ‘‘k’’: {‘‘p’’:
‘‘p@pos decrement’’, ‘‘a’’: ‘‘1’’}, ‘‘v’’: {‘‘p*’’: ‘‘p’’, ‘‘s*’’: ‘‘s’’}}},

6.2 Compiling PSL code to QKVL code

(71) shows how we compile PSL productions of the form (66) into lower-level QKVL
instructions.

(71) From PSL to QKVL
PSL QKV instructions
Condition q[N ] k[n] Comment

z[N ] == Cz z : z[N ] z : Cz Cz is a constant value of z
x[n] == y[N ] x‵: y[N ] x‵: x[n] y[N ] may be replaced by a constant value of x

or a transformed value y[N ]@F (67b)

Action v[n]
u[N ] := w[n] u : w[n] w[n] may be replaced by a constant value of u

In the instructions,“(n)” and “(N)” are redundant, since for the query, the state variables
are always evaluated at the cell being updated (N), and the information used to do the
updating (k, v) always comes from the cell n meeting the Condition relating it to N . We
therefore typically omit “(n)” and “(N)” when giving QKVL instructions, as in (99) – (100)
in App. A. Note that the specifications of q, k, v here apply to every cell in the layer
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realizing the given production (68d-i): the use of the labels N,n is only to indicate which of
all the cells with the specified q, k, v values correspond to the cells labelled N,n in the PSL
production being compiled.

It is not hard to see why the compilation of a PSL production to QKVL instructions
follows (71), which should be read as follows. The cell attributes q, k, v are all state structures.
The structure given in (71) for cell N ’s query has two non-null state variable values: z —
which has the value assigned to z in N ’s input attribute, input[N ].z, here called z[N ] — and
x‵ — which has the value assigned to y in input[N ], written y[N ]. Similarly, (71) specifies
for the attribute key at cell n the two non-null state variable values z : Cz, x

‵ : x[n]. For
cell N ’s query to match cell n’s key, both non-null-valued state variables must match: for
z values to match, we must have z[N ] == Cz, and for x‵ values to match, we must have
y[N ] == x[n]. Thus these two values in q[N ] and k[n] implement the desired Condition.

Any number of equality constraints may be present in the Condition of a PSL production,
and for each such constraint, we simply insert into the state structure for query and key the
state-variable values given in (71). This is amply exemplified in (99) – (100).

The value attribute is straightforward: for a pair of cells n,N for which the Condition is
met, (71) specifies that value[n] is the state structure in which state variable u is assigned
the value that w has in input[n] — this is notated “u : w[n]”. When the cells n,N meet the
Condition, the Action uses this state structure to determine output[N ], which is the same as
input[N ] except that the value of state variable u in this structure is set to w[n], over-writing
any value u may have in input[N ]. As with the Condition, the Action of a production may
have any number of assignments of the form u[N ] := w[n], and for each one, u : w[n] is
inserted into value[n].

As mentioned in the Comment column, the translations in (71) also cover the cases in
which y[N ] is replaced with a constant or a transformed value y[N ]@F in a Condition, or
w[n] is replaced by a constant in an Action. In fact the specifications in (71) produce a
translation for any PSL production having the form (66). The extensions in (67) are handled
as follows.

Inequality conditions. When an inequality condition in a PSL production z[N ] != Cz is
translated into QKVL, q is specified as z : z, and k as z != Cz. The semantics of ‘!=’ here
is that this key does not match a q[N ] for any position N where z[N ] = Cz. Similarly, the
PSL inequality condition z[n] != Cz is translated into QKVL by specifying k as z : z and q
as z != Cz; this q fails to match k[n] at any position n where z[n] = Cz.

Operators in Conditions. Already treated in (71).

Repeat blocks. Just like PSL, QKVL allows a sequence of layers to be tagged as a repeat
block which functions just as in PSL.

This covers all the PARSE and GEN productions given in (99) – (100).

7. TPF, implementational level. DAT, A Discrete-Attention-only
Transformer network

We are finally ready to produce our Discrete-Attention-only Transformer network, DAT,
which computes ICL functions in F . We need to convert the discrete symbolic instructions
of QKVL into matrices of numerical weights that generate the vectors q, k, v. For this we
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need an embedding of the discrete state structures of QKVM in SSS into a vector space of
transformer hidden states, VSSS.

7.1 Embedding abstract machine cell-state structures as transformer-cell vector
states

(72) Embedding state structures s ∈ SSS as vectors s ∈ VSSS: Fully local case

a. s is a concatenation of vectors vx over all state variables x. Within s, vx begins
with neuron cbx and ends with neuron cex: this is the x-register Vx within s.

b. The possible values {xi}dxi=1 ≡ Vx of variable x are encoded as 1-hot (i.e., localist)
vectors {−→xi }dxi=1 ⊂ Rdx . We can order the neurons so that −→xi is the ith coordinate
vector: [−→xi ]j = δij .

c. The vector encoding of the binding of variable x to the value xi ∈ Vx is −−→x : xi;
this is the 1-hot vector −→xi located in the register Vx for variable x (from neuron
cbx to neuron cex).

d. If there are M state variables encoded in the hidden state, {vm}Mm=1, and variable
vm has dvm possible values, then VSSS ≡

⊕M
m=1 Vvm

∼=
⊕M

m=1Rdvm ∼= RD where

D ≡
∑M

m=1 dvm .

e. This can be analyzed as a tensor product representation (TPR) with 1-hot em-
beddings of the state variables serving as TPR role vectors and 1-hot embeddings
of state variable values serving as TPR filler vectors.

For explanation of the TPR analysis of this embedding, see App. C. The TPR analysis is
helpful for showing how our analysis of DAT generalizes from the fully local embedding
of (72) to more distributed embeddings (75). Although we do not explicitly use these
distributed embeddings for the hand-programming reported here, the analysis applies equally
well to these embeddings, and is likely to prove necessary for probing for state vectors in
embeddings that are learned by transformer models: these are expected to be distributed,
not local (see discussion in Sec. 9.2). In the body of the paper we will restrict attention to
the simplest case, the fully local embedding, which is visualized in (73). This is essentially
the representation of variable/value structures utilized by Friedman et al. (2023): what they
call a ‘disentangled residual stream’.

(73) Fully local embedding of SSS visualized

cbf cef

↓ ↓

⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝ ⃝ ··· ⃝

position symbol region field type index prev pos prev sym prev reg prev fld prev type prev ind position‵ symbol‵ · · ·

p s r f t d p* s* r* f* t* d* p‵ s‵ · · ·

(74) Properties of the fully local embedding of SSS in VSSS

a. In this embedding, a state variable x (a TPR role) corresponds to a subspace Vx
of VSSS: the subspace spanned by the unit vectors for dimensions cbx through cex.

b. The subsequence of neurons encoding a variable x — spanning from neuron cbx
through neuron cex — constitutes the x-register within the overall vector s.
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c. When two state variables x and y have the same set of possible values V =
{v1, . . . , vd}, there is an isomorphism between Vx ∼= Rd and Vy ∼= Rd: for any
value vi ∈ V, −−→x : vi ∈ Vx corresponds to −−→y : vi ∈ Vy, these being the same vector
−→vi (the embedding of vi — the ith coordinate vector — in Rd) located within
the x and y registers, respectively. This is what it means for x and y to “have
the same value”. (In the TPR analysis, x and y are roles bound to the same
filler vi; see App. C).

(75) Distributed embeddings summary — from App. C
There are two types of distributed embeddings which are isomorphic, under orthogonal
linear transformations, to the fully local embedding of (72), and under the TPR
analysis take the identical form, with only these differences:

a. Semi-local orthonormal embedding: identical, except the filler vectors −→vi are
orthonormal (but not necessarily 1-hot). There are localized registers, but the
vector embeddings of values for the state variables {−→vi }dxi=1 are, in general, dense
distributed — not 1-hot — vectors.

b. Fully distributed orthonormal embedding: identical, but the role vectors as well
as the filler vectors are orthonormal (and not necessarily 1-hot). When the
role vectors are not 1-hot, there are no localized registers: all state variables’
embeddings are superimposed over the complete set of neurons spanning VSSS.
In this case, the hypothesis that a learned hidden representation has the form
specified here requires special methods for uncovering full distributed TPRs: see
the discussion of the Discover technique in Sec. 9.2.

7.2 The DAT architecture

To perform ICL, the DAT is given as input an appropriate prompt: a symbol string of
variable length P , with s[p] ∈ S being the type of the symbol in position p ∈ {1, . . . , P} ≡ P,
and S the vocabulary of symbol types. The input layer of DAT, like that of a decoder-only
transformer, extends beyond the P prompt cells hosting the prompt; the layer extends up to
a fixed total of T cells, with the cells following the initial P prompt cells — the continuation
cells — ready to host the continuation string that constitutes the model’s output.

(76) Discrete-Attention-only Transformer (DAT) state dynamics: Parallel processing of
the prompt

a. Machine states

i. Layers 1, . . . , L, each a sequence of subnetworks called cells with positions
1, . . . , T

ii. Each cell has a state specified by 5 attribute vectors, each in a vector space
VSSS:

• input vector i

• query, key, value vectors q,k,v

• output vector o
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iii. The query, key and value vectors for any cell are affine transformations of
its input vector. The weights in these transformations are the parameters
specifying the layer (they are constant throughout a layer).

iv. Unlike standard transformers, there are no MLP or LayerNorm sublayers;
DAT is an attention-only transformer architecture (with a single attention
head).

b. Inputs in layer 1

i. The layer-1 prompt cell with position p has input vector i(1)[p] =
−−−−→
s : s[p] +

−−→p : p +
−−→
a : 1 where s[p] is the type of the symbol at position p, and a is the

parse flag which is initialized to 1 for each prompt cell. (These are the cells
subject to the productions of PARSE given in (99).)

ii. The input vector of the layer-1 cell carrying the final symbol of the prompt
has an additional variable set, the end-of-prompt flag variable z which is set

to EOP:
−−−−−→
z : EOP .

iii. Note that in the local embedding,
−−−−→
s : s[p] is the 1-hot vector embedding of

s[p] in the s-register Vs and −−→p : p is the 1-hot vector embedding of p in the
p-register Vp: summation of these vectors in two orthogonal subspaces is
equivalent to concatenation.

c. Cell-state update computation: Discrete Attention (single-headed)

i. Attention vectors; DATmax. In any layer, cell N ’s output vector o[N ] is
determined by (i) the cell’s input vector i[N ] and (ii) the value vector v[n]
of a cell n with a key vector k[n] that matches the non-null variable values
encoded in the query vector q[N ] of cell N ; this n is given by the function α
defined as follows. For all N = 1, ..., T , let the raw and normalized query-key
dot-product vectors δ[N ], δ̂[N ] ∈ RT have components, for n = 1, ..., T :

δ[N ]n ≡ q[N ] · k[n] δ̂[N ]n = δ[N ]n/||q[N ]||2
Then, for the following reason, we define

α(N) ≡ min
{
n ∈ {1, ..., T}

∣∣ δ̂[N ]n = 1
}

Because of the 1-hot encodings we are using in VSSS , q[N ] · k[n] is the
number of variable registers set in q[N ] to non-null values for which the
corresponding variable registers in k[n] have the same value; the total number
of such non-null values in q[N ] is just ||q[N ]||2, which means that δ̂[N ]n ≤ 1,
with equality holding only when the desired perfect matching occurs between
the query and key vectors. Hence the requirement that δ̂[N ]n = 1.9 If no
perfectly matching n exists, α[N ] is undefined; if multiple such matches occur,
α[N ] is (by default) the first/leftmost match: hence the min over n.10 So α

9. The DAT programs produced by our compiler will always yield ||q[N ]|| = ||k[n]|| for all N,n in the same
layer. Thus we can equivalently define δ̂[N ]n = q̂[N ] · k̂[n] while normalizing both q and k to unit length.
For extension of these mathematical properties of attention in DAT to non-one-hot encodings, see App. C.

10. In future work exploring in-weights learning in the DAT, it may improve gradient propagation to implement
‘left-mostness’ differentiably by adding to the raw dot-products δ[N ]n a quantity λ(n) which smoothly
decreases as n increases and which has an overall magnitude small enough to ensure that the addition of
λ will break exact ties in δ but never alter the location of argmaxn{δ[N ]n +λ(n)}. Using a new variable l,
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implements exactly the attentional selection process of the QKV machine
(68c). Thus the attention-weight vector computed in standard transformers
by the softmax over normalized query-key dot-products is replaced in DAT
by

DATmax(δ̂[N ]) ≡ 1-hot(α(N))
where 1-hot(n) is the one-hot vector in RT with value 1 at location n.

ii. Inequality conditions. Recall from Sec. 6.2 that a PSL production with
an inequality condition z[N ] ! = zi is translated into QKVL by specifying
q as z : zi, and k as z ! = zi; this key does not match a query for which
the value of z is zi. In DAT, for all cells n in the layer implementing this
production, the activity of each neuron µ in the z register of k[n] is set
to [k[n]]µ = 1 − [−→vi ]µ, the ones’-complement of −→vi . Within the z-register,
this will yield a raw-attention dot-product δ[N ]n ≡ q[N ] · k[n] of 0 when
q[N ] = −→vi , but a dot product of 1 whenever q[N ] = −→vj with j ̸= i.

iii. DATnorm. Given a vector u ∈ VSSS , define DATnorm(u) so that for
each state variable x, the register subspace Vx — hosted by neurons cbx
through cex — is independently normalized within DATnorm(u) to the 1-
hot vector with activity 1 at the neuron in position argmaxi∈Vx{ui}, where
‘i ∈ Vx’ abbreviates ‘cbx ≤ i ≤ cex’. Within any x -register, if ux = 0, we set
DATnorm(ux) = 0. As used in the DAT architecture in (76c-iv), when u ̸= 0,
there will never be a tie for the maximum element of a vector {ui}i∈Vx used
as an argument to argmax for computing DATnorm. Note that DATnorm
operates within each register independently, quite unlike LayerNorm. Thus
the register structure within DAT’s hidden (attribute) vectors impose real
structure on DAT computation.

iv. The output vector o[N ] of a cell N is given by
o[N ] = DATnorm

(
i[N ] + κv[n]

)
n ≡ α(N)

where v[n] is the value attribute vector of cell n; α is defined in (76c.i), and
if it is undefined, we have simply o[N ] = DATnorm

(
i[N ]

)
= i[N ]. We can

choose any κ > 1; we let κ = 2. (As in standard transformers, the term i[N ]
is the contribution of a residual connection which adds the input vector to
the output.) Two cases exist for each state variable x:

if v[n] does not have x set to a non-null value, then — within register
Vx — v[n] = 0 and therefore o[N ] = i[N ];

if v[n] has x set to a non-null value vk, and in i[N ], x has a different
non-null value vj , then within register Vx, o[N ] = −→vk , the 1-hot
embedding of vk. This is because, in the x register, i[N ] + κv[n]
has value 1 on the jth neuron (from i[N ]) and value κ = 2 > 1

this could be arranged by inserting, for small enough ϵ, l : ϵ/n into key[n] and l : 1 into query[N ] for all N ;
n is the numerical value of the position variable input[n].p. Clearly, an analogous manoeuvre could yield
‘right-mostness’ via a new variable ρ, and each production could select for left- or right-most attention by
specifying either l : 1 (and ρ set to null) or ρ : 1 (l null), respectively, in its particular query. With this
modification in place, DATnorm could be differentiably approximated by softmax with a low temperature
parameter, returning at N a nearly-1-hot vector of attention weights, ‘hot’ at argmaxn{δ[N ]n + λ(n)},
the left- (or right-)most location n of a 1 in δ̂[N ]n.
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on the kth neuron (from v[n]), so the DATnorm operation resets
the former to 0 and latter to 1.11

Thus this implements the update rule for the QKV machine (68c).

d. Cell updating sequence

i. The prompt cells are all updated in parallel; the input attribute vector i(2)[p]
of the cell in position p of layer 2 is the output attribute vector o(1)[p] for
the cell in position p of layer 1. This is repeated for all layers.

ii. A sub-sequence of layers can constitute a repeat block, in which case the
layers in that block are evaluated in sequence repeatedly until a termination
condition specified for that block is met.

(77) DAT Machine state dynamics: Autoregressive generation of the continuation [as for
QKVM (69)].

a. Given a prompt of length P , the level-1 states of cells with p = 1, ..., P are
determined by the prompt (76b.i). These are processed in parallel according to
(76). The continuation cells are updated autoregressively. The level-1 state of
cell P + 1 is the level-L state of cell P (except that p := P + 1). The values of
all state variables (except p) are copied from P to P + 1, not just the symbol
variable s.

b. Cell P + 1 is processed through all L layers, and then the level-1 state of cell
P + 2 is set equal to the level-L state of cell P + 1 (except that p := P + 2). This
process iterates until a termination condition is met (e.g., the generation of a
special termination symbol).

c. The generated continuation string is read from the level-1 continuation cells as
the sequence of symbols that are embedded as the vectors i(1)[p].s, p = P, P+1, ...

A DATL program specifies a sequence of layers, some of which may be marked as forming
a repeat block with a specified termination condition. Each layer ℓ is specified by a set of
query/key/value weights, which determine each of a cell n’s attribute vectors q[n],k[n],v[n]

through an affine transformation of the cell’s input vector i[n] via a matrix W(ℓ)
q,k,v and a

bias vector b
(ℓ)
q,k,v that implement the mappings Wq,k,v of (68d-i).12

7.2.1 Compiling from QKVL to DATL

As spelled out in (78), compiling a QKVL program produces a set of affine-transformation
weights (in a matrix and bias vector): for each layer, these transform a cell’s input vector
i into its query/key/value attribute vectors q, k, v. Compiling proceeds layer by layer as
follows. A QKVL instruction for a layer, a target-variable : source-variable pair such as x : y,
is compiled into a set of weights that can be loaded into the DAT Transformer. Weights
are built up starting from zero, adding for each QKVL instruction a contribution to the

11. Should it happen that i[N ].x already has the same value as v[n].x, −→vk , then i[N ] + κv[n] = (1 + 2)−→vk
which is similarly reset by DATnorm to simply −→vk .

12. The current default size of each bias vector in the dat explorer simulator, Sec. 7.2.3, is 3936 (41 registers
each of size 96); the size of each matrix is [3936, 3936].
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weight matrices and biases. [Wk]yx denotes the block submatrix (within the key-generating
matrix Wk) which maps the subspace of Vy embedding values of a source variable y into the
subspace Vx embedding values of the target variable x. bk is the constant bias term in the
affine transformation mapping i to k: k = iWk + bk.

(78) Compiling from QKVL to DATL, for attribute k (attributes q, v operate identically)
QKVL DAT result attribute vector contribution to weights Wk,bk

a. x : y k[n].x := i[n].y k[n] := i[n] Wk [Wk]yx = Idx

(block identity matrix Vy 7→ Vx)
dx = # possible values for x = dy

b. x : y@F k[n].x :=
(
i[n].y

)
F k[n] := i[n] Wk [Wk]yx = F

F = matrix implementing
value-transform F

c. x : xi k[n].x := −→xi k[n] := bk [bk]x = −→xi
the x register Vx of bk is −→xi

d. x != xi k[n].x :=
−→
1 −−→xi k[n] := bk [bk]x =

−→
1 −−→xi

the ones’-complement of −→xi
e. x != y k[n].x :=

−→
1 − i[n].y k[n] := i[n] Wk [Wk]yx = 1I− Idx

the ones’-complement of Idx

−→
1 is the vector with 1 in every position; thus

−→
1 −−→xi is the ones’-complement of −→xi , the

vector with 0 in position i and 1 in every other position: this matches the vector embedding
of an x value −→xj if and only if j ̸= i. 1I is the matrix of all 1s. (Note 8, page 44, points
out that the F needed for (78b) always exists, given a linearly-independent, e.g., one-hot,
encoding of variable values.)

7.2.2 DAT Operation

Details of the operation of the DAT are presented in App. I.

7.2.3 The dat explorer simulator

The TPF is implemented in a publicly-accessible python package on github; it consists of
several programs: psl compiler, weights compiler, dat interpreter, dat transformer,
and dat explorer.13 The dat explorer enables users to load a PSL program, compile it
into a QKVL program, compile that into the numerical weights for a DAT, enter a prompt
and run the DAT, visualizing each of its resulting cell states (for each column and layer).
Visualization features include:

• pull-down menu for selecting a PSL program for producing a prompt continuation

• scrollable view of columns and layers of the DAT running the compiled program

• a selectable set of watch-registers that are displayed in each cell of a layer

• dynamically built tooltips to see all registers of a cell row

13. The GitHub URL will be provided on publication
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• locus of attention α(N) for each cell N (76c.i)

• currently-active prompt, with generated and gold continuation

• scrollable view of the running QKVL code (by production)

Here is a screenshot of the program on the propositional-logic inference prompt (4):
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7.2.4 Experiments

We tested our DAT using the following prompts:

Name Prompt Gold Continuation

tgt 1 Q the big bear ? a red car A the big bear $ . Q
some baby cub ? one small house A

some baby cub $ .

tgt 2 Q - his green bird A his green bird . Q - some
light monkey A

some light monkey .

j loves m Q john loves mary A mary hugs john . Q sue
loves bill A

bill hugs sue .

act2pass Q x V y A y Was V By x . Q u V w A w Was V By u .

act2pass 2 Q x V y A y Was V -en By x . Q u1 u2 V w1
w2 w3 A

w1 w2 w3 Was V -en By
u1 u2 .

swap Q B V D E A D E V B . Q F G H V K L A K L V F G H .

cross mult Q ( x / y ) /// (( u // v )) A ( x * v ) / (( y **
u )) . Q ( a / b ) /// (( c // d )) A

( a * d ) / (( b ** c )) .

implica Q x => y A y or not x . Q ( u and v ) => z A z or not ( u and v ) .

implica 2 Q x = > y A y or not x . Q ( u and v ) = > z A z or not ( u and v ) .

The correct completion sequence for all of these prompts was predicted by the DAT.14 In
addition to the above examples, DAT achieved 100% accuracy when tested on the first
1000 examples from each of the following splits of the 1 shot rlw task: test, ood lexical,
ood cons len 7, and ood cons count 7. Recall that learned models struggled with these
OOD tests (Sec. 4.2.3).

8. Universality of the framework: TPF is Turing-complete

How general is the framework we have developed? Specifically, we return to the question
raised in Sec. 1.4: how general is the class of functions that can be computed by PSL programs
and thereby through DAT transformer networks?15 By the classic theory-of-computation
definition of ‘computable’, any computable function f can be computed by some Turing
Machine TMf , specified by a machine-instruction table governing the evolution of the
machine’s internal finite-state controller, which, conditioned by the current control state
and the symbol on the tape currently being read by the machine’s read/write head, writes a
symbol and moves the head one position left or right. We adopt the particular TM formalism
in which each cell in this table (corresponding to a specific state/row, symbol/column pair
[σ0, S0]) is an instruction of the form (79).

(79) Turing-table instruction

14. Note regarding cross mult: It is currently not possible to give the template in the natural form Q ( x / y )
/ (u / v ) A ( x * v ) / ( y * u ). Multiple distinct symbols for parentheses and division — (, and ((, etc.
— must be used because, in the current initial state of work in the TPF, the space F of ICL functions
studied constrains prompts so that every symbol type occurs in only one field type within a single Q- or
A-region (39c.i), and each field type occurs only once within a given Q- or A-region (39b.i). This is also
manifest in (7). Note that ‘**’ is a variant of ‘*’ intended to denote multiplication, not exponentiation.

15. We thank Rick Lewis for pointing the way towards the results presented here.
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a. If the machine state is σ0 and the symbol at the current head position is S0,

b. then write the symbol S1, change the state to σ1, and move the head on the tape
one position in direction δ (= ‘L’ or ‘R’ ; left or right).

Abbreviated: σ0, S0 ⇒ σ1, S1, δ

8.1 DAT(TM) implementation of a given TM

Once we see how to express a TM-table instruction in PSL, TPF lets us compile a PSL
program implementing all TMf ’s instructions into DAT(TMf ): a DAT that exactly emulates
TMf . We first show how the general instruction (79) can be expressed as a sequence of five
productions in PSL.Treating the entire instruction table of TMf as a list of such instructions
(arbitrarily ordered), and translating each instruction into the corresponding five productions,
gives a PSL program for computing f . The entire set of production is one large repeat block:
productions keep applying until none are able to apply. The TM tape is realized as the
sequence of cells in the Production System Machine PSM (Sec. 5), one cell of the PSM for
each cell of the tape. The three state variables we use in the PSM are given in (80).

(80) State variables for PSM realizing a Turing Machine

a. s[N ] = current symbol-type in tape position N

b. c[N ] = 0 if N is not the current head position (otherwise 1, L, or R).

c. σ[N ] = current TM state (for all N)

The Turing-table instruction (79) [σ0, S0 ⇒ σ1, S1, δ] is translated into the following five
productions; if the direction of head movement δ is L, Production P2(L) will be activated;
otherwise, P2(R). Here, writing values to state variables is not autoregressive — the PSM
cell being updated, N , is wherever the TM head is located (wherever c[N ] ̸= 0 at the time
of update) — and attention is not causal — crucially, n > N holds often; e.g., see (82).

(81) Production P1. In the currently active tape position, update the state and symbol

a. Condition: c[N ] == 1, σ[N ] == σ0, s[N ] == S0

b. Action: set c[N ] := δ, σ[N ] := σ1, s[N ] := S1

(82) Production P2(L). Move head left, update state there

a. Condition: c[n] == L, p[n] == p[N ]@pos increment

b. Action: set c[N ] := 1, σ[N ] := σ[n]

(83) Production P2(R). Move head right, update state there

a. Condition: c[n] == R, p[n] == p[N ]@pos decrement

b. Action: set c[N ] := 1, σ[N ] := σ[n]

(84) Production P3. Remove moved-head mark16

16. The Condition utilizes an option in the PSL syntax described in (67f), where “x[n] in [L, R]” does the
work of two productions, identical except that in one production, the Condition includes “x[n] == L”
while in the other, it includes “x[n] == R”. In the QKV Machine, this can be achieved in a single layer
in which the key is 2-hot, with a 1 at the loci of both L and R, allowing a ‘perfect match’ with a query
containing either s : L or s : R. (The normalization of k however needs to count only 1 possible match,
not 2, since a perfect match is either L or R, not both, in q.)
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a. Condition: c[N ] in [L, R]

b. Action: set c[N ] := 0

(85) Production P4. Broadcast new state globally

a. Condition: c[n] == 1

b. Action: set σ[N ] := σ[n]

The input to the PSM is determined as follows. The sequence of symbols s[N ] in the
input to the PSM is the sequence of symbols on the input tape of TMf . The TM-state
variable σ[N ] is set to the TM’s start state, for all positions N . If the TM head starts at
position N0 on the TM tape, in the initial state of the PSM, c[N ] is initialized to 1 for
N = N0 and to 0 for all other N .

A minimal illustration of the operation of a single TM instruction — on a tape containing
only 3 positions, with the head in the middle position — is provided in (86).

(86) Example of a Turing-Machine update

TM-table-cell instruction: σ0, B ⇒ σ1, X, R

a.
s A B C start
σ σ0 σ0 σ0
c 0 1 0

b.

N P1

s A X C
σ σ0 σ1 σ0
c 0 R 0

c.

n N P2(R)
s A X C
σ σ0 σ1 σ1
c 0 R 1

d.

N P3

s A X C
σ σ0 σ1 σ1
c 0 0 1

e.

N (N) n(N) P4

s A X C
σ σ1 σ1 σ1
c 0 0 1

Thus we have:

(87) DAT (TMf ) Theorem: TMf in DAT weights
DAT(TMf ) implements TMf using a repeat block of five layers for each cell of the
TMf instruction table.
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In DAT(TMf ), the TM program for f is implemented in the weights; next we see how
such a program can be implemented instead in activations: a kind of ICL.

The universality result (87) establishes that, despite the focus here on the particular
Templatic Generation Task defined in Sec. 4, the TPF has extremely general relevance for
mechanistic interpretation of transformer computation (see Sec. 9.3.3).

8.2 DAT(UTM): DAT implementation of a Universal TM

The approach presented in Sec. 8.1 could be used to implement a TM that is universal:
one that can take as input a tape that includes the TM table for computing a function f
as well as an argument string s, and can write on the tape the value f(s). However, the
random-access memory capability of the TPF allows a natural way to directly construct
a more efficient Turing-Universal version of the DAT: DAT(UTM). For DAT(UTM), the
cells of the PSM are used, like the tape of any universal TM, to store the TM table for
computing f as the initial segment of the prompt, followed by the argument string s as the
remainder of the prompt. The completion generated by the machine is then f(s). This is
the TM analog of the use of ICL for TGT, with the prefix of the prompt encoding a TM
program rather than a text-generation template. The analogy is even closer with the task of
Nested Function Evaluation presented below (95).

In more detail, for computing f(s), the prompt is specified as in (88). Each single entry
in the TMf table is stored in the initial state-variable values of a single cell of the PSM (these
are never overwritten); these state variables are Σ0,Σ1, S0, S1, and ∆. The only deviation
from the standard DAT architecture defined above is that the prefix of the initialization (the
input layer) — where the instructions of TMf are written — assigns values to state-variables
other than s and p; the remainder of the input layer — the suffix of the prompt — is set
as usual for PSM, assigning values only to state-variables s and p to provide the argument
symbol string s for computing f(s).

(88) Universal Turing-Machine input prompt for PSM(UTM) for computing f(s)

a. Prefix (program)

i. For each TMf instruction: σ0, S0 ⇒ σ1, S1, δ (79),

ii. assign initial state-variable values of a single cell of the PSM prompt:
Σ0 : σ0, S0 : S0, Σ1 : σ1, S1 : S1, ∆ : δ

b. Suffix (data)
Encode the argument-string s as usual, assigning the state-variable s[n] the value
of the symbol type for the nth position p[n] in s.

We then use the same productions as for the fixed-function TMf in the previous section
(81 – 85), except that the one production that encodes the content of a TMf table instruction,
P1, is replaced by the production U1 (89) which ‘looks up’ the relevant instruction parameters
within the activations in the current prompt rather than having those parameters built into
the weights of all the layers implementing P1 for each of the instructions of the TMf table.

(89) Production U1. Same as Production P1 (81) but with states, symbols, and head-
movement-direction looked-up from the prompt-prefix cell n encoding the TM
instruction in which the current-state and current-symbol parameters Σ0, S0 match
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those of the currently-updating prompt-suffix cell N (emulating the current TM-head
position)

a. Condition: c[N ] == 1, Σ0[n] == σ[N ], S0 [n] == s[N ]

b. Action: σ[N ] := Σ1[n], s[N ] := S1[n], c[N ] := ∆[n]

This establishes a second universality result for TPF:17

(90) DAT (UTM) Theorem: TM in DAT activations
DAT(UTM) is a version of DAT that implements a UTM in a single repeat block of
five layers.

9. Discussion and future work: Mechanistic interpretation and
enhancement of transformers

9.1 What have we learned?

A number of findings were previewed in the theoretical summary (19), which we reprise here,
adding pointers to the relevant discussion in the paper.

(91) How can ICL in a transformer perform symbolic templatic text generation?

Via the following [transformer element] ∼ [symbolic element] correspondences:

a. a cell’s residual stream ∼ a variable-value structure (73)

i. a subspace of the residual stream ∼ a state variable

ii. a vector component within a variable’s subspace ∼ a value of that variable

b. a layer’s internal connections ∼ a production (71 – 78)

i. query-key matching in attention ∼ evaluating the condition of the layer’s
production

ii. value vectors ∼ the production’s action

iii. query-key matching on a subspace corresponding to a goal ∼ conditional
branching for goal-directed action (Sec. 5.5)

c. a nested set of structural variables ∼ hierarchical data structure (42)

i. sharing the value of a level-l structural variable ∼ in the same (type of)
level-l constituent (adopted from Hinton, 2023)

d. a sequence of structural-variable values (at the ‘field’ level) ∼ the sequence of
abstract roles defining a template (32)

A high-level summary of our results, with pointers to relevant sections of the paper, is
given in (92).

(92) A type of transformer — a Discrete-Attention-only Transformer (DAT) can:

a. encode a cell state as a vector-embedded structure that encodes the values for a
set of symbolic state-variables (Sec. 7.1);

17. As this paper went to press, Schuurmans et al. (2024) presented the construction of a Universal Turing
Machine using a pre-trained LLM rather than a hand-programmed transformer (and 2027 rather than 5
productions). It’s possible that their method for inducing an LLM to execute formal productions given in
the prompt might be adapted to the type of UTM-emulation-by-ICL presented here.
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b. employ this same structure for queries, keys and values (68d);

c. encode, in a cell’s state, abstractions like the role of a symbol in a parse of the
prompt, via a set of structural variables; encode a hierarchical parse structure in
the state of an entire layer (Sec. 5.2);

d. use simple weight matrices to generate q, k, v vectors that implement symbolic
productions: condition/action rules that read and write values of state variables
(Sec. 7.2.1);

e. implement a higher-level symbolic programming language for trans-
former computation, PSL (Sec. 5);

f. implement programs in this language which parse the prompt, e.g., as a template
(Sec. 5.4);

g. implement programs in this language for generating text that is sensitive to this
parse structure, including a type of ICL (Sec. 5.3).

9.2 Mechanistic-interpretation analysis of symbol processing in trained
transformer models

The TPF results on how to construct a transformer to perform templatic text generation
through ICL — answering our questions (14) — suggests many hypotheses about how trained
transformers perform this task (13b); these hypotheses are all quite precisely specified and so
formally testable. The hypotheses fall into two groups: those based on the specific algorithm
for TGT that we have programmed into our system, Sec. 9.2.1, and those based on the
general ICL framework formalized by TPF, Sec. 9.2.2. The universality results of Sec. 8
encourage us to apply these latter hypotheses to networks trained for tasks other than TGT

— e.g, LMs.

9.2.1 Specific hypotheses concerning TGT

(93) Specific TPF-algorithm-derived hypotheses about how trained transformers perform
TGT

a. Performing the operation of a single production — two classes of testable hy-
potheses for each of 29 productions P :

i. attention pattern: the loci of some head’s maximal attention for symbols in
some layer are fit by the attention pattern produced by P ;

ii. attribute vectors: the i, q, k, v vectors of some head in some layer, when
projected to an appropriate subspace, are fit, under an appropriate linear
transformation, by the corresponding attribute vectors implementing P in
the DAT.

b. Encoding the parse:

i. For each constituent, on some subspace of the residual stream, the projection
on that subspace is the same for all symbols within that constituent.

ii. For each constituent type, on some subspace of the residual stream, the
projection on that subspace is the same for all symbols within constituents
of that type.
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(93a-i) can be used as a kind of screening method for picking out which attention heads
at which layers are candidates for interpretation as a given production. For (93a-ii), there is
already publicly-available software to perform the analysis. Exploiting the framework of
Tensor Product Representations (TPRs, App. C), the Discover package (McCoy et al.,
2019) can take as input a set of hidden vectors from a ‘target model’ under analysis, as well
as a hypothesis about the symbol structures that these vectors embed: here, a set of roles
(variables) have been assigned fillers (values). In the Discover technique (the ‘decoder’
variant, McCoy, 2022, Sec. 7.3.1), a trainable auxiliary neural network takes the target hidden
vector and decomposes it according to the symbol structure hypothesized to interpret it: this
auxiliary network learns a vector embedding for the hypothesized roles and their possible
fillers, and a linear transformation to map the target vector to a space of the dimensionality of
a TPR constructed using those vector embeddings. Optimization adjusts these embeddings,
and the linear transformation, so that the resulting linearly-transformed TPR vector best
approximates the actual target hidden vector. If the result is a good approximation with
small error, then the hypothesis is confirmed and, given the hypothesized role:filler structure
for any target hidden vector, we have a fully interpretable, closed-form equation for the
hidden state.

The closed-form equation for the hidden vector makes it possible to manipulate that
vector by subtracting a role:filler pair’s contribution to that hidden vector and replacing it
with the appropriate contribution for a different filler for that role, with the objective of
making a controlled alteration of the output of the target model, thereby testing the causal
role of the symbolic structure hypothesized as the interpretation of the hidden state. In
Soulos et al. (2020), studying the SCAN compositionality task, the output, initially correct
for an original input jump twice after run left, changes to a new output that would be correct
for jump thrice after run left, when the contribution of twice to the hidden vector was replaced
with the contribution that would have been made by thrice; multiple such alterations can be
performed in sequence to ultimately end up with the output appropriate for, say, walk thrice
after look right. That is, the TPR approximation gave a purely formal analysis of the target
model’s hidden encoding vector that provided a causally efficacious decomposition: altering
the constituents in the encoding given to the decoder caused it to decode it into just the
novel output appropriate for the given altered constituents.

This same technique could be used to test the 29 × 4 fully-precisely-specified hypotheses
stated in (93a-ii). Note that the ‘decoder’ variant of Discover finds, within the repre-
sentational space of the target vector being interpreted, a subspace that can be linearly
mapped to a TPR — the TPR need not explain the entire representational space, which
is appropriate here because we expect our algorithm’s variable:value pairs to explain only
part of the variance in the hidden vectors; the hidden vector may well encode many other
properties as well. This is particularly expected because even a trained network that does
encode something like our productions will not dedicate an entire layer to a single production;
successfully trained transformers of Sec. 4.2.3 perform TGT with many fewer layers than
the 29 deployed in our one-production- and one-head-per-layer compiled DAT.

The type of encoding structure hypothesized in (93a) has in fact been identified by
Feng & Steinhardt (2023), in a trained LM performing ICL on prompts like ‘K lives in WA.
J lives in MD. Where does J live?’ The example region of the prompt creates a binding
problem, where K’s residence must be bound to WA, J’s residence must be bound to MD,
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and accurately answering ‘where does x live?’ requires retrieving the correct binding for x.
Each of the two facts in the prompt involves a separate binding of person to place; Feng et
al. found that the two facts were in essence assigned two identifiers (analogous to ‘fact 1’,
‘fact 2’) and the entities in each fact were bound to their corresponding identifier in the
residual stream — by addition, with a particular orthogonal subspace dedicated to encoding
the identifiers. These ‘identifier labels’ are embedded in the residual stream just as are our
‘region labels’, to which they directly correspond.

9.2.2 General hypotheses concerning ICL

Rather than testing the specific hypotheses realized in our DAT for TGT (93), we can
reformulate the hypotheses in more general terms and use existing methods to discover
structures hidden within a trained model performing another task.

(94) General TPF-framework-derived hypotheses about how trained transformers perform
ICL

a. For some head in some layer, when projected to an appropriate subspace, the
trained model’s i, q, k, v vectors are fit, under an appropriate linear transfor-
mation, by an unknown (to-be-discovered) set of state-variable:value structures

i. In this variant of (93a), the variable:values are unknown structures to be
discovered by analysis

ii. Here we can use an extension of the Discover technique in which there is
no predetermined human-generated hypothesis for the role:filler structure of
the target hidden states under analysis. A second auxiliary network called
Role is used to learn to assign roles and fillers for the interpretation of a
target hidden state: here, the variables and values of a state structure. In
its original application (Soulos et al., 2020), this was successfully applied
to an encoder-decoder RNN solving the Scan compositional-generalization
task: Role learned to assign one of a set of initially meaningless roles to
each symbol in an input sequence, such that the hidden vector produced
by the target RNN’s encoder network was accurately modeled as a linearly-
transformed TPR built from: a learned set of vector embeddings for the
roles; a learned set of vector embeddings for the input symbols; and a learned
linear transformation of the resulting TPR.

b. For each constituent, on some subspace of the residual stream, the projection
on that subspace is the same for all symbols within the same constituent of an
unknown (to-be-discovered) parse tree;

i. In this variant of (93b), the parse is not hypothesized a priori, but discovered
empirically by the analyst, as in the work of Murty et al. (2022, 2023).

ii. As mentioned in Sec. 9.2.1, Feng & Steinhardt (2023) discovered a case of
this in which the constituents are distinct facts given in the prompt.

c. At some layer and for some head, there is systematic matching between subspaces
of queries and keys at positions systematically linked by the trained transformer’s
attention mechanism; across different prompts, as the query varies, the key varies
congruently:
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i. under an orthogonal transformation T,18 implementing a to-be-discovered
production’s Condition (“x[n] == y[N ]”): k[n] = q[N ]T on appropriately
chosen subspaces of the k,q vector spaces —

ii. possibly with an orthogonality-imposing transformation N intervening: k[n] =
q[N ]TN, (analogous to the one’s-complement operation implementing “x[n]
!= y[N ]”; N can be any anti-symmetric matrix, N⊤ = −N).

d. When decomposed using the subspaces discovered in (94c), some weight matri-
ces Wq,k,v contain embedded orthogonal block sub-matrices, analogous to the
embedded identity matrices I of DAT for copying values between variables (or
an embedded N matrix for negating a variable).

9.3 Enhancing TPF and transformer architectures

Of the many directions for possible future research building on the work presented here,
we mention one that significantly extends the framework TPF itself (Sec. 9.3.1), two that
pursue how features of the standard transformer architecture might be incorporated into the
DAT (Sec. 9.3.2), and three that apply what we have learned from TPF to suggest potential
improvements to the standard transformer architecture (Sec. 9.3.3).

9.3.1 Extending the TPF: Composition and recursion

The task, TGT, defined by the functional-level description of the system studied here (39),
is to identify a single template, illustrated by a single example at the beginning of the input
prompt, and to generate text by instantiating that template with new symbol strings filling
its slots. The powerful symbolic-computation operation of embedding would, in this context,
consist of multiple templates in a prompt, some embedded within the slots of others. To
pursue this we are examining a variation of the task in which templates are replaced by
symbolic-function definitions: in place of Q swap x y A y x we have swap ( x , y ) → y x.
This extended task, Nested Function Evaluation (NFE ), naturally allows embedding of
functions/templates within others, as in the recursive example in (95),

(95) Nested Function Evaluation: NFE

Prompt: swap ( x , y ) → y x ; twice ( x ) → x x ; swap ( twice ( a b ) , swap ( c , d ) ) →
Continuation: swap ( twice ( a b ) → a b a b , swap ( c , d ) → d c ) → swap ( a b a b , d c )

→ d c a b a b

Preliminary results of current work show that the methods developed here for TGT
extend naturally to NFE. TPF can employ productions that cycle between two behaviors
which we term copy and eval. The copy behavior operates similarly to ContField: it simply
repeats symbols from the prompt that are too complex to be resolved immediately. This
process continues until a segment of the prompt is found which can be resolved using the
templates already specified (e.g. twice ( a b ) in the example above). At this point the model
switches to the eval behavior, resolving the nested function according to the examples in
the prompt. By iterating between these two behaviors, DAT can resolve complex functions
through their simple constituents and thereby accommodate the two remaining capabilities of

18. T maps the subspace for register y to the subspace for register x (or x‵).
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symbolic computation not captured by TGT itself: composition (26f-iv) and recursion (26e).
Presuming that these preliminary results hold up, the insights from the modestly-extended
TPF suffice to understand how all the fundamental compositional elements of symbolic
computation (26) can be naturally embedded in the continuous numerical computation of
which transformer-style networks are capable.

9.3.2 Enhancing the DAT architecture

Certain features of the standard transformer architecture might profitably be incorporated
into the DAT architecture in future work.

(96) Enhancing DAT with architectural features of standard transformers

a. Multiple attention heads. A production might be implemented as one head within
an extension of DAT deploying multi-headed attention. When multiple produc-
tions’ Conditions are met and their Actions conflict, symbolic production systems
invoke a conflict-resolution procedure preventing multiple conflicting productions
from acting simultaneously. In the multi-headed DAT, pre-programming of the
production system could ensure that such conflict cannot arise, ensuring that such
conflicting productions are separated into different layers, with the appropriate
ordering. Non-conflicting productions could be implemented in different heads
within a single layer. As long as there remains no MLP sublayer in the DAT,
there is little computational difference between productions being implemented
in multiple heads within a single layer or as single heads across multiple layers.

b. MLPs. In our TGT formalization, there is no need to modify symbols or identify
relations between them other than equality, so we have no need of MLPs in
our DAT. Of course it is generally presumed that MLPs play a large role in
LMs and the work here does not speak to their role. Many analogy-inspired
ICL tasks do incorporate symbol modification, and assume prior knowledge of
symbol mappings, as in Q x y z A X Y Z or Q p q r s A t u v w. Addition of
symbol-mapping sublayers into the DAT (e.g., an MLP) would open the door
to studying this larger class of interesting ICL tasks and developing a general
framework that correspondingly extends the version of TPF presented here.

9.3.3 Enhancing the transformer architecture

The following considerations relating our DAT to trained transformers encourage several
possible directions for future work on enhancing standard transformer architectures.

(97) Enhancing standard transformers with architectural features of DAT

a. Repeat blocks. While DAT lacks the MLP and multi-headedness of standard
transformers, it has an architectural feature lacking in standard transformers,
repeat blocks. The power of such structure has been explored in the Universal
Transformer (Dehghani et al., 2018) and in the Looped Transformer (Fan et al.,
2024; Giannou et al., 2023) where all layers together form a single repeat block.

b. Discretization. DATmax and DATnorm could provide important inductive
biases for transformers learning to perform ICL in something like the way our
discretely-functioning DAT does.
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i. DATmax discretizes the processing (attention) to the retrieval of values from
a single (by default, leftmost) locus (76c.i). Csordás et al. (2021) have shown
substantial improvements in learning embedding-depth generalization on
algorithmic tasks by similarly constraining attention.

ii. DATnorm discretizes the data to a single value per variable (76c.iv). DAT-
norm imposes a disciplined use of the residual stream to encode discretely-
valued state variables — a TPR, not necessarily deploying one-hot embed-
dings (see App. C; this generalizes the ‘disentangled residual stream’ notion
of Friedman et al., 2023).

These features of discreteness (97b) could be inserted into standard transformers
softly, as biases implemented as regularization terms added to the loss function.

c. Residual-stream recurrence. During generation, the input to a column of the
DAT is not just the single ‘next symbol’ predicted by the previous column: it is
the full residual stream at the top of the previous column. This allows direct
propagation of computed features of tokens such as role in a parse (e.g., field);
such recurrence gives much power to RNNs and can potentially do the same for
enhanced transformer architectures — at the cost of complicating (or preventing)
training by teacher forcing (see also Fan et al., 2020).19

9.4 Unifying formal, NL-semantics-free and NL-semantics-permeated knowledge

As mentioned in Sec. 1.2, the ultimate goal of this research program is to develop architectures
that intimately unify both (i) TPF’s type of formal, NL-semantics-free processing and (ii)
standard transformer processing. As merely an illustration of the large space of possibilities
for unification, here we present just one approach — admittedly rather heavy-handed and
naive. We propose a transformer architecture part of which is biased (through regularization
terms in the loss function) towards DAT-like processing; the rest of the network is a typical
transformer with no such bias.

(98) Integrating DAT and standard-transformer processing: The Semi-formal Transformer
architecture

a. The residual stream V is the direct sum of two subspaces, the biased subspace
Vb and the unbiased subspace Vu.

b. There are two types of attention heads: biased heads Hb and unbiased heads Hu.

c. Only biased heads can write into Vb (only they can have value vectors with
non-zero components in Vb): Vb, like DAT, is constrained to host a TPR with
subspaces encoding symbolic values for variables; writing into the residual stream
by biased heads uses DATnorm to enforce the constraint that registers have a
unique symbolic value.

d. All heads can read from the entire residual stream, i.e., queries and keys can
contain vector components in both Vb and Vu.

19. Note that, unlike the task for standard transformer LMs, the generation task in TGT is deterministic,
and our production system results in a unique symbol being assigned non-zero generation probability;
thus symbol-generation in a given column does not need to know which of multiple potential symbols was
randomly sampled for generation in the previous column.
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e. Attention for biased heads is subject to a regularization term in the loss function
that biases the model to weights that approximate DATmax, focusing attention
towards a single source.

f. Layers contain an MLP sublayer that operates exclusively on Vu. Any LayerNorm
operations that may be present also apply only on Vu.

In this Semi-formal Transformer architecture, Vb is processed by compositionality-
respecting operations, but control decisions selecting what operations to perform are carried
out by unconstrained neural processes: this division of labor has proved to be very effective
as embodied in the Differentiable Tree Machine (Soulos et al., 2023, 2024).

For a particular task domain, TPF shows how we could pre-program the Hb with domain-
useful, abstract formal operations; the unbiased portion of the model then uses powerful
neural computation to determine how to deploy these formal operations.

9.5 Wrapping up

The neurocompositionality hypothesis (Smolensky, McCoy, Fernandez, Goldrick, & Gao,
2022a, 2022b) proposes that human-level intelligence arises from a deep synergy between
two principles previously viewed as incompatible: representations have compositional struc-
ture that drives their processing, and representations lie in a continuous space supporting
similarity-based generalization and gradient-based learning. We suspect that the astounding
success of transformer-based AI results from these systems satisfying the neurocomposition-
ality hypothesis.

The Transformer Production Framework (TPF) presented here (Secs. 4 – 7) shows with
complete precision and completeness how a characteristically powerful ability of transformers,
templatic text generation through in-context learning (Box 2; Sec. 4.1), can result from
neural networks deploying representations that are continuous and compositional, and
processing that, while numerical and continuous, exploits the compositional structure of the
representations: these networks implement a kind of abstract program that has been a central
model of human higher-level cognition — a production system (16). This production-system
level of description endows the networks that implement it with great power and generality

— it is Turing Universal (Sec. 8).

In addition to using hand-programming to create a fully mechanistically-interpretable
concrete model capable of powerful ICL, TPF provides a rich set of precise, formally-testable
hypotheses about the mechanisms that power ICL in transformers that are trained from
data (Sec. 9.2). If even a fraction of these hypotheses prove sound in future work, significant
light will have been shed on the inner workings of the black boxes powering contemporary
generative AI.
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Appendix A. PSL and QKVL programs for templatic parsing and generation

(99) PARSE

PSL Production QKVL instructions
P# gloss Condition Action q k v

all have parse[N] == 1 all have a:a all have a:1

0 initialize region, type;
field = position

position[N] == posi-
tion[N]

region[N] = R INIT
type[N] = T INIT
field[N] = position[N]
prev position[N] = 0
index[N] = 1

p:p p:p r:R,
t:T,
f:p,
p*:0,
d:1

pre-1 set prev position and
prev symbol

position[n] ==
position[N]@pos decrement

prev position[N] =
position[n]

prev symbol[N] =
symbol[n]

p‵:p@pos
decrement

p‵:p p*:p,
s*:s

1a start Example (at p:0):
r:XQ, t:D, f:FQ, d:0

prev position[N] == 0

region[N] = XQ
type[N] = D
field[N] = FQ
index[N] = 0

p*:p*, p:p p*:0,
p:p

r:XQ,
t:D,
f:FQ,
d:0

1b start Cue (at 2nd Q):
r:CQ, t:D, f:FQ

symbol[n] == symbol[N]
position[n] == 1
position[N] != 1

region[N] = CQ
type[N] = D
field[N] = FQ

s‵:s, p‵:1,
p:p

s‵:s,
p‵:p,
p!=1

r:CQ,
t:D,
f:FQ

start repeat block
pre-
2a

set prev region position[n] ==
position[N]@pos decrement

prev region[N] =
region[n]

p‵:p@pos
decrement

p‵:p r*:r

2a propagate r:XQ to 1st de-
limiter (t:D; starts r:CQ)

prev region[N] == XQ
region[N] == R INIT

region[N] = XQ r*:r*, r:r,
p:p

r*:XQ,
r:R,
p:p

r:XQ

end when NO CHANGE
start repeat block

pre-
2b

set prev region position[n] ==
position[N]@pos decrement

prev region[N] =
region[n]

p‵:p@pos
decrement

p‵:p r*:r

2b propagate r:CQ to input
end

prev region[N] == CQ
region[N] == R INIT

region[N] = CQ r*:r*, r:r,
p:p

r*:CQ,
r:R,
p:p

r:CQ

end when NO CHANGE

3a start r:XA (f:FA) at A in
current r:XQ

symbol[N] == A
region[N] == XQ

region[N] = XA
type[N] = D
field[N] = FA

s:s, r:r, p:p s:A,
r:CQ,
p:p

r:XA,
t:D,
f:FA

3b start r:CA (f:FA) at A in
current r:CQ

symbol[N] == A
region[N] == CQ

region[N] = CA
type[N] = D
field[N] = FA

s:s, r:r, p:p s:A,
r:XQ,
p:p

r:CA,
t:D,
f:FA

start repeat block
pre-4 set prev region position[n] ==

position[N]@pos decrement
prev region[N] =
region[n]

p‵:p@pos
decrement

p‵:p r*:r

4 propagate XA to 1st t:D
(starts r:CQ)

prev region[N] == XA
region[N] == XQ
type[N] == T INIT

region[N] = XA r*:r*, r:r,
t:t, p:p

r*:XA,t:T,
r:XQ,
p:p

r:XA

end when NO CHANGE

5a symbol in XQ later re-
peated in CQ: set t:D

region[n] == CQ
region[N] == XQ
symbol[n] == symbol[N]

type[N] = D r‵:CQ, r:r,
s‵:s

r‵:r,
r:XQ,
s‵:s

t:D

5b symbol in CQ that repeats
from XQ: set t:D, same
field

region[n] == XQ
region[N] == CQ
symbol[n] == symbol[N]

type[N] = D
field[N] = field[n]

r‵:XQ, r:r,
s‵:s

r‵:r,
r:CQ,
s‵:s

t:D,
f:f

5c symbol in XA that repeats
from CQ: set t:D, same
field

region[n] == CQ
region[N] == XA
symbol[n] == symbol[N]

type[N] = D
field[N] = field[n]

r‵:CQ, r:r,
s‵:s

r‵:r,
r:XA,
s‵:s

t:D,
f:f

6 identical untyped symbols
in X have the same C field

symbol[n] == symbol[N]
region[n] == XQ
region[N] == XA
type[N] == T INIT

type[N] = C
field[N] = field[n]

s‵:s, r‵:XQ,
r:r, t:t

s‵:s,
r:XA,
r‵:r,
t:T

t:C,
f:f

7 unset types in XA are de-
limiters

region[N] == XA
type[N] == T INIT

type[N] = D r:r, t:t, p:p r:XA,
t:T,
p:p

t:D

7’ remaining unset types are
constituents

type[N] == T INIT type[N] = C t:t, p:p t:T,
p:p

t:C
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PSL Production QKVL instructions
P# gloss Condition Action q k v

all have parse[N] == 1 all have a:a all have a:1

pre-8 set prev region, prev type,
prev field

position[n] ==
position[N]@pos decrement

prev region[N] =
region[n]

prev type[N] = type[n]
prev field[N] = field[n]

p‵:p@pos
decrement

p‵:p r*:r,
t*:t,
f*:f

8 field sequence is the same
in XQ and CQ

prev region[n] == XQ
region[n] == XQ
prev type[n] == D
type[n] == C
region[N] == CQ
prev type[N] == D
type[N] == C
prev field[n] == prev field[N]

field[N] = field[n] r*‵:XQ,
r‵:XQ,
t*‵:D,
t‵:C, r:r,
t*:t*, t:t,
f*‵:f*

r*‵:r*,
r‵:r,
t*‵:t*,
t‵:t,
r:CQ,
t*:D,
t:C,
f*‵:f*

f:f

start repeat block
pre-9 set prev field position[n] ==

position[N]@pos decrement
prev field[N] =
field[n]

p‵:p@pos
decrement

p‵:p f*:f

9 constituent fields change
only at t:D

prev type[N] == C
type[N] == C

field[N] =
prev field[N]

t*:t*, t:t,
p:p

t*:C,
t:C,
p:p

f:f*

end when NO CHANGE
10 change in f ⇒ d:0 prev field[N] !=

field[N]
index[N] = 0 f*:f*, p:p f*!=f,

p:p
d:0

11 set parse = 0 at prompt’s
last token

z temp[N] == EOP parse[N] = 0 z:z, p:p z:EOP,
p:p

a:0

(100) GENERATE

Production QKV instructions
G# gloss Condition Action q k v

all have parse[N] == 0 all have a:a all have a:0

0 set end = 0, x temp = 0
globally

position[N] ==
position[N]

end[N] = 0
x temp[N] = 0

p:p p:p e:0

pre-1 update prev symbol and
prev field

position[n] ==
position[N]@pos decrement

prev symbol[N] =
symbol[n]

prev field[N] = field[n]
p‵:p@pos
decrement

p‵:p s*:s,
f*:f

1 IF symbol in CQ matching
current symbol is not field-
final THEN [ContField]
copy next symbol in CQ,
set end[N]=1, x temp[N]=0
to prevent application of re-
maining productions

region[n] == CQ
prev symbol[n] == symbol[N]
prev field[n] == field[N]
index[n] != 0

end[N] = 1
x temp = 0
region[N] = CA
symbol[N] = symbol[n]
field[N] = field[n]
type[N] = type[n]
index[N] = index[n]

r‵:CQ,
s*‵:s, f*‵:f,
d‵!=0

r‵:r,
s*‵:s*,
f*‵:f*,
d‵:d

e:1,
x:0,
r:CA,
s:s,
f:f,
t:t,
d:d

pre-2 update prev field and
prev region

position[n] ==
position[N]@pos decrement

prev field[N] = field[n]
prev region[N] =
region[n]

p‵:p@pos
decrement

p‵:p f*:f,
r*:r

2 ELSE (end[N] = 0)
[NextField] find final
position of field in XA
matching current field,
assign following field label
to y temp[N]

end[N] == 0
region[n] == XA
prev field[n] == field[N]
index[n] == 0
prev region[n] == XA

y temp[N] = field[n] e:e, r‵:XA,
f*‵:f, d‵:0,
r*‵:XA

e:0,
r‵:r,
f*‵:f*,
d‵:d,
r*‵:r*

y:f

3 ELSE con’t: IF find initial
position of field y temp[N]
in CQ, copy that sym-
bol and its structural vari-
ables (except r) and set flag
x temp:=1 to block P3’

end[N] == 0
region[n] == CQ
field[n] == y temp[N]
index[n] == 0

x temp[N] = 1
region[N] = CA
symbol[N] = symbol[n]
field[N] = field[n]
type[N] = type[n]
index[N] = index[n]

e:e, r‵:CQ,
f‵:y, d‵:0

e:0,
r‵:r,
f‵:f,
d‵:d

x:1,
r:CA,
s:s,
f:f,
t:t,
d:d

3’ ELSE (x temp=0): find
initial position of the field
y temp[N] in XA, copy that
symbol and its structural
variables (except r)

end[N] == 0
x temp[N] == 0
region[n] == XA
field[n] == y temp[N]
index[n] == 0

region[N] = CA
symbol[N] = symbol[n]
field[N] = field[n]
type[N] = type[n]
index[N] = index[n]

e:e,
x:x,r‵:XA,
f‵:y, d‵:0

e:0,
x:0,
r‵:r,
f‵:f,
d‵:d

r:CA,
s:s,
f:f,
t:t,
d:d
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Appendix B. RASP

In this appendix, we summarize key insights and features of the Restricted Access Sequence
Processing (RASP) language and related work, another line of research that uses a program-
ming language approach to characterize the interpretable kinds of computation that the
transformer architecture can implement. We compare aspects of the RASP approach to the
TPF presented here; see Sec. 2.7 for other points of comparison.

B.1 Overview

We discuss the following three works in the RASP-related line of research, with details
presented in the subsections below.

To better reason about what kinds of computations transformers cam do in terms of
symbolic programs instead of neural network details, Weiss et al. (2021) first proposed the
RASP programming language as a computational model for transformer encoders. Instead
of neural network primitives, the RASP language uses sequence operations as primitives
that are conceptually aligned with transformer components. They demonstrated that their
human-constructed RASP programs are able to solve several sequence-manipulation tasks.

To connect the RASP programs with real transformers, Lindner et al. (2023) proposed a
compiler named Tracr that compiles RASP programs into decoder-only transformer models.
Since RASP programs specify human-interpretable algorithms (i.e., known mechanisms),
Lindner et al. (2023) argued that the corresponding transformer models compiled by Tracr

can serve as ground-truth interpretations, such that the compiled models can be used to
diagnose whether explanations provided by other interpretability tools are correct.

While the RASP language and the Tracr compiler together form a map from human-
written programs into transformer models, Friedman et al. (2023) pursued the other direc-
tion, training a specific type of discrete transformer that can be de-compiled into human-
interpretable programs. Specifically, Friedman et al. defined ‘Transformer Programs’, i.e.,
discrete transformers that are designed to implement human-interpretable programs, by im-
posing a set of constraints. Then, they demonstrated that it is possible to learn Transformer
Programs with gradient-based optimization.

B.2 The RASP Programming Language

Instead of the TGT considered in the current work, the RASP language is based on the idea
of sequence manipulation, with the goal of characterizing how a transformer encoder could
perform multi-step logical inferences over input expressions. That is, RASP programs capture
the transformations on the input sequence as a whole at each step of computation through
a transformer encoder. Therefore, RASP intuitively focuses on mapping the primitive
transformer components, i.e., attention and feed-forward computations, into primitives in
the programming language.

There are two basic types of RASP operations that respectively correspond to the two
main components in the transformer architecture: the element-wise operations (corresponding
to the MLP module) and the select-aggregate operations (corresponding to the attention
module). An input string abc is converted into a sequence through the two built-in sequence
operators (s-ops): tokens(‘‘abc’’) = [‘‘a’’, ‘‘b’’, ‘‘c’’] and indices(‘‘abc’’)
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= [0, 1, 2]. S-ops are functions that map an input string to a sequence of the same length.
S-ops can be composed with arithmetic and logical operators (+, -, %, if, >, <, etc.):
for instance, (tokens if (indices % 2 == 0) else ‘‘-’’)(‘‘hello’’) = ‘‘h-l-o’’.
Constant values are treated as s-ops as well, with a single value broadcasting across all
positions in order to maintain the sequence status: for instance, length(‘‘abc’’) = [3,

3, 3]. Therefore, the composition of s-ops is conceptualized as element-wise operations in
RASP, which matches the intuition behind the MLP layers.

On the other hand, the attention mechanism is conceptualized in RASP as a two step,
select-aggregate operation. In a standard transformer, attention scores are obtained by
the ‘QK circuit’, which uses the dot product between queries and keys to determine how
each position is weighted. The dot product part is captured by the select operation, which
takes as input a key sequence k, a query sequence q, and a binary predicate p. It outputs a
selection matrix named a selector that describes whether condition p(k, q) holds for each
(k, q) token pair. For instance (reprinted from Weiss et al., 2021):

S ≡ select([0, 1, 2], [1, 2, 3], <) =

T F F
T T F
T T T


Next, the ‘OV circuit’ in a transformer produces the output by weighting the symbols

in the value vector according to the attention scores. The weighting and production steps
are handled by the aggregate operation, which takes as input a selector and a sequence;
it outputs another sequence that averages for each row of the selector the values of the
sequence in its selected columns — the “averaging over the binary values in each selector
row” part does the weighting and the “producing the output given the input sequence” part
does the value-vector-based production part. For instance, using the selector S above (also
from Weiss et al., 2021):

aggregate(S, [10, 20, 30]) = [10, 15, 20]

Thus, the select-aggregate operation composes a key, a query, and a value s-op into
an output s-op. Through a combination of element-wise operations and select-aggregate

operations, a RASP program composes primitive s-ops into a final s-op, which maps the
input string into a sequence of the same length. As is mentioned in Section 2.7, it is
demonstrated that RASP programs could be designed to solve several sequence manip-
ulation tasks such as: reversing, histogram, double-histograms, sorting, ranking by fre-
quency, etc. Here, we walk through the RASP solution to a simple task of reversing (e.g.,
reverse(‘‘abcde’’)=‘‘edcba’’). The RASP program for the reversing task is presented
as follows (reprinted from Figure 4 of Weiss et al., 2021):

1 opp_index = length - indices - 1;

2 flip = select(indices , opp_index , ==);

3 reverse = aggregate(flip , tokens);

This program requires a 2-layer transformer with 1 head per layer. The first layer
computes line 1 of the program, where the select-aggregate mechanism is required to
compute the length s-op. Specifically, instead of a primitive, length is formally defined
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as length = 1 / aggregate(select(1,1,==), indicator(indices==0)). Then, given
input string ‘‘abcde’’, indicator(indices==0) = [1, 0, 0, 0, 0]. It follows that:

select all ≡ select(1, 1,==) =



T T T T T
T T T T T
T T T T T
T T T T T
T T T T T
T T T T T


The select-aggregate attention operation in layer 1 thus returns an s-op where each

entry is the reciprocal of the input length:

aggregate(select all, indicator(indices==0)) = [0.2, 0.2, 0.2, 0.2, 0.2]

The following two element-wise operations are then applied on the output of aggregate
to compute the opp index. They are composed into a single MLP layer, and the output
s-op is stored in the residual stream for later use.

• Taking the reciprocal on the output of the attention block: length = 1 / [0.2, 0.2,

0.2, 0.2, 0.2] = [5, 5, 5, 5, 5];

• Get a reversed s-op of the indices: opp index = length - indices - 1 = [5, 5,

5, 5, 5] - [0, 1, 2, 3, 4] = [1, 1, 1, 1, 1] = [4, 3, 2, 1, 0];

The second layer computes line 2 and 3 of the program, where line 2 specifies the selector
and line 3 specifies the aggregate operation. No element-wise operations are needed at this
layer. Given the s-op representing the reversed indices, it is natural to define the attention
pattern that selects input characters in the reversed order:

flip ≡ select(indices, opp index,==) =


F F F F T
F F F T F
F F T F F
F T F F F
T F F F F


Then, the final aggregate operation applies the flip selector on the input s-op to obtain

the final output:

aggregate(flip, tokens) = [e, d, c, b, a]

Notice that each RASP program decides the number of layers and the number of attention
heads per layer needed for executing the program. See App. B.3 for more details.

The following table presents rough functional correspondences between elements in RASP,
the standard transformer architecture, and PSL.
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RASP Function Transformer PSL

s-op string → sequence hidden states en-
coded in the resid-
ual stream

cell states in SSS

selector (s-op k, s-op q, pred-
icate p) → selector

attention matrices Production Condition

element-wise opera-
tions

s-op → s-op MLP modules N.A.

select-aggregate

operations
(selector S, s-op v)
→ s-op

attention heads Production (evaluating
Condition and taking
Action)

B.3 The Tracr Compiler

Given the structure of the RASP programming language, the Tracr compiler first compiles
RASP into an intermediate representation that operates on subspaces of the residual steam,
which conceptually corresponds to the QKVL in TPF, and then compiles the intermediate
representations into weights and matrices that realize a decoder-only transformer model,
which conceptually corresponds to the DAT in TPF. We summarize the steps of compiling
RASP programs into the intermediate level representation below.

1. Given a RASP program, create a computational graph with each node representing a
RASP expression (either an s-op or a selector) and each edge representing a RASP
operation (either element-wise or select-aggregate). This graph encodes the depen-
dencies between how s-ops are composed, the order of which is directly translated into
attention and MLP block arrangement.

2. Given a pre-determined vocabulary and a maximal sequence length, for each node
in the graph, treat it as a variable and infer the set of all possible values it can take.
Allocating a subspace of the residual stream (by assigning a set of basis vectors) to
this variable, such that every variable has a subspace orthogonal to the subspaces of
other variables. This achieves a disentangled residual stream, so that every operation
reads from and writes to a dedicated subspace.

3. Given the inferred values in step 2, translate each individual node into a transformer
block.

• Tracr supports two types of representations: for a categorical variable, each
sequence token is represented as a one-hot vector; for a numerical representation,
each sequence token is represented as a scalar value in a one-dimensional space.

• The element-wise operations are translated into MLP blocks based on manually
engineered heuristics, with categorical variables handled by lookup tables and
numerical variables handled by piecewise linear approximations: discretizing the
range of possible values into buckets (with the granularity chosen to minimize
approximation error).

• The select-aggregate operations are translated into attention blocks. A selector is
represented by a WQK matrix, and an aggregate operation is represented by a
WOV matrix, with only hard attention and categorical inputs allowed.

74



Mechanisms of Symbol Processing in Transformers

4. Translate the entire computational graph into an arrangement of transformer blocks.
With the goal of finding the smallest possible model, first find out the total number
of layers needed by computing the longest path from input to a given node, which
denotes the number of attention and MLP modules needed to compute the represented
steps. Then, arrange the nodes into alternating attention and MLP blocks without
violating any dependency in the graph.

5. Embed each s-op (both the input s-ops to an operation and the output s-ops from an
operation) into its own orthogonal subspace, and construct the residual stream space
as the direct sum of all components’ input and output spaces.

Here are some comments comparing Tracr to the QKVL in the current study:

• Both systems deploy a disentangled residual stream, where each individual s-op variable
(in RASP) and each state variable (in PSL) occupies an orthogonal subspace in the
residual stream. In both systems, it is necessary to have a pre-determined space
of the possible values each variable could take in order to allocate an orthogonal
subspace in the residual stream. Although this fully local embedding scheme is
generalizable to distributed embeddings (App. C), the current implementation is
helpful for interpretability purposes as it is easy to read out from the residual stream
what each component of the model is computing.

• The process of translating primitives in each system to the transformer blocks is
similar. For QKVL, it is the Condition and Action in the PSL that determines what
the ⟨query, key, value, input, output⟩ should be for each cell: the Condition decides
q[N ] and k[n] and the Action decides v[n]. For Tracr, it is the RASP program that
specifies the order of element-wise and select-aggregate operations, as well as the
input s-ops and selectors the operations take. Due to the fundamental conceptualization
in RASP as sequence manipulation, there is no corresponding concept of a cell in
RASP, and it is always some entire sequence that is taken as the query, key, or value.

• In PSL, an Action changes the target value of a state-variable u of N (i.e. u[N ]) by
copying / rewriting it from the source value of a state-variable w of n (i.e. w[n]).
The corresponding mechanism in the QKVM is to store any variable values (to be
overwritten) in the value entry of n, which will be applied if the QK matching
condition is met. In Tracr, this writing mechanism is functionally realized by the
aggregate operation (given the result from the select operation), as there is always
a dedicated variable, i.e., an orthogonal subspace in the residual stream to store the
output of an aggregate operation. In TPF, in contrast, writing of values to variables
is done in the same subspace of the residual stream as the storage of those values.

• The process of determining the total number of layers needed is similar in the two
systems: apart from the generation process in PSL, the parsing process applies in
parallel to the prompt cells, and the number of layers are determined by the steps defined
in the PARSE algorithm. The parsing steps could be translated into a computational
graph, as is in Tracr, to capture the sequential order and the dependencies between
steps.
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B.4 Learning Transformer Programs

While RASP and Tracr offer a framework to convert a human-interpretable program into
a transformer model, Friedman et al. (2023) proceeded in the other direction: defining a
type of transformer that could be trained, learned, and de-compiled back into a human-
interpretable program, similar to RASP. Here, we summarize the characterization of this
subset of transformers, namely the Transformer Programs.

Friedman et al. proposed two constraints to characterize Transformer Programs. The first
is to impose a disentangled residual stream, as is already deployed in Tracr. By dividing the
residual stream into a set of coordinate-aligned orthogonal subspaces, each corresponding
to a variable, the disentangled residual stream enables interpretable reading and writing
behaviors. Formally, suppose there are in total m variables (e.g., the tokens and positional
encodings count as 2 variables), all with cardinality k (maximum number of values). Suppose
the input sequence has length N , then the input embeddings x ∈ {0, 1}N×mk. To point
to the ith variable, they define indicator π ∈ {0, 1}m where

∑m
j=1 πj = 1. Then, define

the projection matrix to be W = [π1Ik; · · · ;πmIk]⊤ ∈ Rmk×k, where Ik is a k × k identity
matrix. This makes π an m-dimensional, one-hot vector (ith entry = 1) that extracts the ith

variable from the residual stream. Then, each attention head is associated with πQ, πK , πV
vectors, extracting the key, query, and value single variables — in contrast with the multiple
variables assigned values in TPF queries, keys and values.

The second constraint concerns the categorical attention ahead. In RASP, the predicate
p : (k, q) → {0, 1} determines the attention pattern, now with the constraint that each
query is mapped to exactly one key. Since the key and query are two variables, each with
cardinality k, we have Wpredicate ∈ {0, 1}k×k where each row sums to 1. Since each query
token attends to a single key token, the output is also categorical. Then, the ith row of
the attention matrix has the attention score Ai = One-hot(argmaxjSi,j). Hard attention is
used to enforce this constraint. In particular, if there is no matching key for a query, then
attend to the BOS token; if there are multiple matching keys, attend to the closest match.
In contrast, in TPF, no position is attended to rather the BOS token when there is no key
matching a query, and when multiple perfect matches obtain, the left-, or right-most match
is chosen.

Given the two constraints above, an attention head is defined by the following four
components: (πK , πQ, πV ,Wpredicate). Then, it becomes possible to define a set of parameters
for those components and to optimize over these parameters. Formally, they use Φ to
represent the following parameters: for each indicator πK , πQ, πV , define ϕK , ϕQ, ϕV ∈ Rm

that find the correct variable to project or extract as query, key, and value; for each row
of the predicate matrix, define ψ1, ..., ψk ∈ Rk that find the correct key position that each
query should attend to. Then, through gradient-based optimization of the distribution over
discrete transformer weights p(θ|Φ) with the following empirical loss, it is able to extract a
discrete, human-readable program from a trained transformer:

L = Eθ∼p(θ|Φ)[Ew,y∼D[− log p(y|w; θ)]] ≈ 1

S

S∑
s=1

Ew,y∼D[− log p(y|w; θs)]

where D is the training set of (w, y) pairs.
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Appendix C. Tensor Product Representations

A general method for encoding symbol structures as neural activity vectors is Tensor Product
Representations (TPRs) (Smolensky, 1987, 1990).20 Any symbol structure type can be
decomposed as a set of structural roles, and a particular token of that type is defined
by assigning fillers to these roles. In the special case relevant to TPF, the state-variable
structure (43) is defined by roles which are the state variables, and fillers that are the values
that these variables can be assigned. Retaining the notation of the main text of this paper,
we can write r:f for the binding of the role r to the filler f. The particular state-variable
structure shown in (43) is defined by the bindings {r : XQ, f : FQ, s : Q, ...}

To create a TPR we adopt row-vector embeddings of roles ER : r 7→ −→r and fillers

EF : f 7→
−→
f ; then the TPR for a particular symbol structure S defined by the bindings

β(S) = {ri : fi}Mi=1 is the tensor TS ≡
∑M

i=1
−→ri ⊗

−→
fi or equivalently the matrix TS ≡∑M

i=1
−→ri ⊤

−→
fi . That is, [TS]αγ = [TS]αγ =

∑M
i=1[

−→ri ]α[
−→
fi ]γ .

TPRs are designed so that compositional operations on entire structures can be performed
in parallel by operating on them with linear transformations (Smolensky, 2012) — but also so
that it is possible to accurately extract fillers of individual roles when needed. In the standard
case — lossless TPR encoding — the role embeddings are chosen to be linearly independent,
which guarantees the existence of a set of dual vectors {−→ri +} defined so that −→ri + · −→rj = δij .

Then to unbind role −→ri it suffices to compute −→ri + TS ≡
−̂→
fi . It is straightforward to verify

that this is an accurate extraction, that
−̂→
fi =

−→
fi :

−̂→
fi = −→ri + TS = −→ri +

(∑M
j=1

−→rj ⊤
−→
fj
)

=
∑M

j=1

(−→ri + · −→rj
)−→
fj =

∑M
j=1 δij

−→
fj =

−→
fi

This error-free extraction occurs whenever the role embeddings are linearly independent;
in the general case, these are dense vectors and the TPR is fully distributed — every element
of the tensor contributes to encoding the filler of every role; there are no separable ‘registers’
for the roles.

Note that in the special case that the linearly independent role embeddings are orthonor-
mal, then −→ri + = −→ri . This is the fully distributed orthonormal embedding of (75b).

One-hot role embeddings are yet a further special case of orthonormality (since fully
dense vectors can also be orthonormal). In this special case, TS is simply the matrix in

which the kth row is
−→
fk . For the state-variable structure of TPF, the kth row of TS is exactly

the register for the kth state variable, containing the vector
−→
fk which is the embedding of

the value of that variable; this is the semi-local case of (75a). In the yet further special case
when the filler embeddings are also 1-hot, this reduces to exactly the fully local embedding
of (74), visualized in (73).

We now show that the DAT can implement a PSL program correctly without using the
1-hot, fully local embedding of state-variable structures deployed in the main text (and the
current software). We will require only that the role embeddings are orthonormal, and that
the filler embeddings are normalized.

To work, what DAT requires of its state-variable-structure representation is only that:
for Conditions, we can accurately identify perfectly matching query and key vectors; and for

20. Related methods, many under the rubric of Vector Symbolic Architectures (Kleyko et al., 2022; Schlegel
et al., 2022), might well work as well as TPRs here, provided sufficiently accurate means are available for
detecting perfect matching for Conditions and perfect value-changing for Actions.
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Actions, that we can accurately adjust state variables according to the demands encoded in
the value vectors.

As for the Condition requirement, the dot product of the TPRs for two SSS structures S
and S′ (a query and a key, in the DAT case), when we adopt orthonormal (not necessarily
1-hot) role embeddings, is21

TS·TS’ =
(∑M

i=1
−→ri ⊗

−→
fi
)
·
(∑M

j=1
−→rj ⊗

−→
f ′j

)
=

∑M
i=1

−→
fi ·

−→
f ′i =

∑M
i=1 cos(

−→
fi ,

−→
f ′i)∥

−→
fi ∥ ∥

−→
f ′i ∥

If all filler vectors are normalized, ∥
−→
fi ∥ = 1, then each term in this dot product reduces to

cos(
−→
fi ,

−→
f ′i), which is ≤ 1, with equality holding only when

−→
fi =

−→
f ′i. Let the total number of

non-null values (non-zero filler vectors) in the query be m.22 Then dividing the dot product

by m gives a value less than 1 unless
−→
fi =

−→
f ′i for all roles i with non-zero fillers. So let

us define the query and key vectors q and k to be the TPRs for their respective defining
state-variable structures S and S′ in SSS, divided by

√
m. Then their dot product is

q · k = (TS/
√
m) · (TS’/

√
m) = (TS ·TS’) /m

So just as for the 1-hot encoding in the body of the paper (76c-i), requiring this dot product
to be 1 enforces perfect matching of all non-null variable values specified in the query.

For implementing a production’s Action, to set the value of variable r in the TPR residual
stream O to f, we use

O 7→ O + −→r ⊤
[−→
f −

−→
r+O

]
In this adjustment, the first term inserts the value f into r while the second removes the
existing value of r (if any).23

Since the DAT could function perfectly well with non-1-hot encoding of state variables,
given a trained transformer capable of performing ICL, it is entirely possible that it is
performing computation quite similar to our DAT, using distributed (dense) encodings.
Testing this hypothesis can be pursued through the steps detailed in Sec. 9.2.

Appendix D. Templatic Generation Task (TGT) Grammar

The grammar describing Templatic Generation tasks is shown here in Backus-Naur form:

<tgt> ::= <example> <cue>

<example> ::= Q <question> A <answer>

<cue> ::= Q <question> A

<question> ::= <dc sequence>

21. Here we have used the identity (−→u ⊗−→v ) · (−→x ⊗−→y ) = (−→u · −→x ) (−→v · −→y ) as well as the orthonormality
condition on roles −→ri · −→rj = δij

22. As noted in note 9, page 51, for the DAT (i.e., transformer weights compiled from a PSL program), the
set of state-variables assigned non-null values is always the same for query and key, thus avoiding any
match issue arising from variables that are null-valued in one but not the other.

23. Instead, it would also be possible to adapt the approach used in the main text (76c-iv), adding to the old
value of the variable an encoding of the new value up-weighted by κ, and then applying DATnorm to
eliminate all but the most-active value. In the non-1-hot case, DATnorm is defined by extracting the filler
vector (value) of each role vector (variable), finding the closest element in the filler-vector dictionary, and
setting the variable to that value, as shown above, removing the current value. This version of DATnorm
may be useful for other purposes, but for applying the Action of a production, the method proposed in
the text of this Appendix is clearly simpler.

78



Mechanisms of Symbol Processing in Transformers

<answer> ::= <dc sequence>

<dc sequence> ::= <constituent list> [ <delimiter> ]

<constituent list> ::= <constituent> [ <delimiter> <constituent list> ]

<delimiter> ::= <symbol> [ <delimiter> ]

<constituent> ::= <symbol> [ <constituent> ]

Additional constraints:

- no symbol can be repeated within the <question>, within the <answer>,

or within the <cue>.

- symbols in the <constituents> of the <cue> cannot overlap with

symbols in the <constituents> of the <question>.

Appendix E. TGT testing prompt prefix

When testing LLMs on our TGT dataset (Sec. 4.2.2), the following sys prompt was prepended
to each Q/A string in the dataset:

You are a helpful assistant; please complete the following abstract

pattern exactly once. The pattern contains an example question/answer

pair, followed by a second question and a missing answer. Do not output

anything except the final answer. Pay close attention to all special

characters.

One of the task variants also appends the TGT grammar to the above system-prompt:

The grammar for these patterns can be described as follows:

<tgt> ::= <example> <cue>

<example> ::= Q <question> A <answer>

<cue> ::= Q <question> A

<question> ::= <dc sequence>

<answer> ::= <dc sequence>

<dc sequence> ::= <constituent list> [ <delimiter> ]

<constituent list> ::= <constituent> [ <delimiter> <constituent list> ]

<delimiter> ::= <symbol> [ <delimiter> ]

<constituent> ::= <symbol> [ <constituent> ]

Appendix F. PSL Grammar

The grammar for the PSL Language is shown here in Backus-Naur form:

<program> ::= <declarations> <statements>

<declarations> ::= <declaration> [ <declarations> ]
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<declaration> ::= <register map> | <constant map> | <system map> | <watch list>

<register map> ::= registers ‘‘{’’ <register entry list> ‘‘}’’

<register entry list> ::= <register entry> [ ’’,’’ <register entry list> ]

<register entry> ::= <register name> ’’:’’ <register short name>

<register name> ::= <unquoted string>

<register short name> ::= <quoted string>

<constant map> ::= constants ‘‘{’’ <constant entry list> ‘‘}’’

<constant entry list> ::= <constant entry> [ ’’,’’ <constant entry list> ]

<constant entry> ::= <constant name> [ ’’:’’ <quoted string> ]

<constant name> ::= <unquoted string>

<system map> ::= system ‘‘{’’ <system entry list> ‘‘}’’

<system entry list> ::= <system entry> [ ’’,’’ <system entry list> ]

<system entry> ::= <system register name> ’’:’’ <register name>

<system register name> ::= symbol | position | output | parse | eop

<watch list> ::= watch ‘‘[’’ <register name> [ ’’,’’ <register name> ] ‘‘]’’

<statements> ::= <statement> [ <statements> ]

<statement> ::= <causal attn statement> | <where statement> | <repeat statement>

<causal attn statement> ::= causal_attn ’’:’’ <boolean value>

<boolean value> ::= true | false

<where statement> ::= <where variant> <conditions> ’’:’’ <assignments>

<where variants> ::= where | where_lm | where_rm

<conditions> ::= <condition> [ and <conditions> ]

<condition> ::= <simple condition> | ‘‘(’’ <conditions> ’’)’’

<simple condition> ::= <bool compare> | <bool in>

<bool compare> ::= <left cond> <compare op> <right cond>

<left cond> ::= <register name> ‘‘[’’ <register index> ‘‘]’’

<register index> ::= N | n

<compare op> ::= ‘‘==’’ | ‘‘!=’’

<right cond> ::= <constant name> | <right reg> [ <weight func> ]

<right reg> ::= <register name> ‘‘[’’ <register index> ‘‘]’’

<weight func> ::= ‘‘@’’ <weight function>

<weight function> ::= pos_increment | pos_decrement

<bool in> ::= <left cond> <in op> ‘‘[’’ <constant list> ‘‘]’’

<in op> ::= in | not in

<constant list> ::= <constant name> [ ’’,’’ <constant list> ]
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<assignment list> ::= <assignment> [ <assignment list> ]

<assignment> ::= <assign left> ‘‘=’’ <assign right>

<assign left> ::= <register name> ‘‘[’’ N ‘‘]’’

<assign right> ::= <constant name> | <right reg>

<repeat statement> ::= repeat <statements> until <stop condition>

<stop condition> ::= NO_CHANGE | <conditions>

Appendix G. QKVL File Description

The QKVL file is in JSON format. At the top level, it consists of a single dictionary
containing system maps and an entry for all the productions from the PSL program:

Dictionary Key Dictionary Value

register map A dictionary of register names and their associated short names
constants map A dictionary of constant names and their optional associated strings
system map A dictionary of system reserved registers and their associated register names
watch list A list of registers to be watched (for dat explorer)
weights A list of blocks (each either a production dictionary or a repeat-dictionary)

See Sec. 6.1.1 for explanation of the term “weights” here: these are symbolic instructions,
not numerical weights, but they will later be compiled into numerical weight matrices for
implementation in the DAT.

A production-dictionary represents a PSL production. It contains the following dictionary
keys and values:

Dictionary Key Dictionary Value

layer comment the comment associated with this block
causal attn specifies if causal attention in effect for block
right match specifies if right match attention in effect for block
weights the weights dictionary for this block

A weights-dictionary represents a production’s conditions (in the ‘q’ and ‘k’ dictionary keys)
and its action (in the ‘v’ dictionary key):

Dictionary Key Dictionary Value

q a registers dictionary for the query weights
k a registers dictionary for the key weights
v a registers dictionary for the value weights

A registers-dictionary represents destination/source pairs. The dictionary keys are the
destination registers and the associated dictionary values are the source registers or constants.
Short names (usually the first letter of the register name) are used for both destination
and source registers (except “index” and “parse” are respectively abbreviated “d” and “a”).
Each register (e.g., “p”) can be optionally followed by 1 of 3 register modifiers:
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- p (the value of p in the current column ‘‘N’’)

- p* (the value of p in the previous column ‘‘N - 1’’)

- p‘ (the value of p in the column ‘‘n’’)

- p*‘ (the value of p in the column ‘‘n - 1’’)

If the source value is a register, it can be followed by an optional function, for example:

- p@pos_increment

The currently supported function names are: @pos increment, @pos decrement.

By default, source values in the k- and v-registers dictionaries represent the “==” operator.
Source values for the “!=” operator take the form:

- [‘‘!=’’, <register or constant>]

Source values for the “in” operator take the form:

- [‘‘in’’, <comma separated list of constants>]

Here is a sample of a production dictionary:

{

‘‘layer_comment’’: ’’// parse step 1b. start Cue ’’,

‘‘causal_attn’’: false,

‘‘right_match’’: false,

‘‘weights’’: {

‘‘q’’: {

‘‘s‘’’: ‘‘s’’,

‘‘p‘’’: ‘‘1’’,

‘‘p’’: ‘‘p’’,

‘‘a’’: ‘‘a’’

},

‘‘k’’: {

‘‘s’’: [

‘‘in’’,

‘‘-’’,

‘‘.’’,

‘‘A’’

],

‘‘p‘’’: ‘‘p’’,

‘‘p’’: [

‘‘!=’’,

‘‘1’’

],

‘‘a’’: ‘‘1’’

},
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‘‘v’’: {

‘‘r’’: ‘‘CQ’’,

‘‘t’’: ‘‘D’’,

‘‘f’’: ‘‘FQ’’

}

}

}

A repeat dictionary represents a the use of the “repeat” keyword in PSL to repeat a group
of blocks until the specified value changes. It consists of 3 key/value pairs:

Key Value

layer comment the comment closest to the start of the repeat block
until the stopping condition for the repeat processing
weights the list of weight dictionaries for the inner blocks

Currently, the only condition supported for “until” is “NO CHANGE”, meaning the blocks
are repeated until the value of all registers in all columns after processing the last inner
block matches their values before executing the first inner block.

Here is a sample of a repeat dictionary:

{

‘‘layer_comment’’: ’’// repeat pre_2a, 2a. propagate XQ rightward’’,

‘‘until’’: {},

‘‘weights’’: [

{

‘‘layer_comment’’: ’’// parse step pre_2a. set prev_region’’,

‘‘weights’’: {

‘‘q’’: {

‘‘p‘’’: ‘‘p@pos_decrement’’,

‘‘a’’: ‘‘a’’

},

‘‘k’’: {

‘‘p‘’’: ‘‘p’’,

‘‘a’’: ‘‘1’’

},

‘‘v’’: {

‘‘r*’’: ‘‘r’’

}

}

},

{

‘‘layer_comment’’: ’’// parse step 2a. propagate XQ’’,

‘‘weights’’: {

‘‘q’’: {
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‘‘r*’’: ‘‘r*’’,

‘‘r’’: ‘‘r’’,

‘‘a’’: ‘‘a’’,

‘‘p’’: ‘‘p’’

},

‘‘k’’: {

‘‘r*’’: ‘‘XQ’’,

‘‘r’’: ‘‘R’’,

‘‘a’’: ‘‘1’’,

‘‘p’’: ‘‘p’’

},

‘‘v’’: {

‘‘r’’: ‘‘XQ’’

}

}

}

]

}

Appendix H. Compiling a PSL program into a QKVL instruction file

H.1 Register Abbreviation

Register names are translated to their abbreviation using the “registers” map specified in
the PSL program. In addition, if the position-index of the register is “n”, a backquote
(“‘”) is appended to the abbreviation.24Also, if “@function” is specified after the register
index, then “@function” is appended to the abbreviation. The constants for initial values,
“R INIT” and “T INIT”, are abbreviated to “R” and “T”, and the variables named w temp

are abbreviated to “w” (for w = x, y, z).

H.2 Production Block Processing

Each <production block> is processed as follows:

1. The comment closest to the beginning of the production block in the PSL is captured.

2. Empty q, k, and v register dictionaries are created.

3. Each condition in the condition list is added to the q and k register dictionaries as
follows:

• The left-hand — target — register name is translated to its abbreviation.

24. In Production P5b of (99), the PSL Condition “region[n] == XQ, region[N ] == CQ” becomes in QKVL
query: {r : r, r‵ : XQ}, key: {r : CQ, r‵ : r}. These match when query[N ] == key[n], i.e., if and only if
r[N ] == CQ and r[n] == XQ.
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• The right-hand — source — register name or constant is translated to its abbrevi-
ation. If the comparison operator of the condition is “!=”, the right-hand abbrevi-
ation is translated to the following list of strings: [“!=”, <right abbreviation>].

• If the index of the left-hand register is “n” or “*:n”, then:

– The left/target abbreviation becomes the dictionary key, and the right/source
abbreviation becomes the dictionary value; they are added to the k-register
dictionary. Then, to the q-register dictionary, the left/target abbreviation is
added as both the dictionary key and value, stripping off the backquote of
the value, if any.

• Otherwise:

– The left/target abbreviation becomes the dictionary key, and the right/source
abbreviation becomes the dictionary value; they are added to the q-register
dictionary. Then, to the k-register dictionary, the left/target abbreviation
is added as both the dictionary key and dictionary value, stripping off the
backquote of the value, if any.

4. Each assignment in the assignment list is added as a dictionary key/value pair to the
v-register dictionary.

• The left-hand/target register name is translated to its abbreviation.

• The right-hand/source register name or constant is translated to its abbreviation.

• Using the left-hand/target abbreviation as the dictionary key and the right-
hand/source constant or abbreviation as the dictionary value, the pair is added
to the v-dictionary.

5. A weights-dictionary is created to hold the q-, k-, and v-register dictionaries (dictionary
keys are “q”, “k”, and “v”, and the dictionary values are the associated register
dictionaries).

6. A production-dictionary is created consisting of a “layer comment” dictionary key/value
and a “weights” dictionary key/value (to hold the weights-dictionary).

H.3 Repeat Block Processing

Each repeat block is processed as follows:

1. The comment closest to the start of the repeat block is captured.

2. The “until” condition is captured.

3. Each production block within the repeat scope is processed as described in Sec. H.2,
resulting in a list of production dictionaries.

4. A new repeat-dictionary is created with the following dictionary key/values:
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Key Value

layer comment the comment for the repeat block
until the condition for terminating the repeat process
weights the list of production-dictionaries

The final result is a list of production and repeat dictionaries that are converted to JSON
format and output to a file.

Appendix I. DAT Operation

This appendix summarizes how the DAT Transformer operates (during inference, i.e., in-
context learning; in-weights-learning has been left for future work). The explanation takes
as a starting point a conventional transformer, and describes the alterations that lead to the
DAT.

I.1 High-Level Architecture

• We start with a normal decoder-only transformer.

• We remove the Feedforward module in each layer.

• In each column of the transformer, the residual stream, and vectors for inputs, queries,
keys, and values, are maintained as n registers registers, each of which is a 1-hot
(or 0-hot) vector over the vocabulary symbols.

• We load and freeze all Multi-Head Attention (MHA) weights (DAT only operates in
inference mode).

I.2 Transformer-Level Operation

• As part of the DAT initialization, the tensor weights (compiled from QKVL code that
was compiled from PSL code) are loaded into the Q, K, V weights (matrices and bias
vectors) for each layer. These weights are then frozen.

• The ‘forward()’ method of the transformer contains an additional parameter ‘input
embeddings’ that is used as follows:

– When the given prompt is being processed (the initial prompt, before any new
columns have been generated), ‘input embeddings’ is set to None.

– When the remainder of the prompt is being processed, ‘input embeddings’ for
the current column is set to the output of the DAT for the previous column.

• When the ‘forward()‘ method of the transformer is called, we build the embeddings
for all columns as follows:

– Compute the symbol embeddings using a frozen matrix that translates each vocab
index into its 1-hot vector representation.

– Compute a “one” embedding (using the vocab index for the symbol “1”).
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– Compute an “eop” embedding (using the vocab index for the symbol “EOP”).

– Compute “pos” embeddings (using the vocab index for each position number,
e.g., “42”).

– Initialize the “src” embeddings to all zeros (for all columns and all registers within
each column).

– Finally, we set registers on the src embeddings:

∗ Set the “s” register to the symbols embeddings.

∗ Set the “p” register to the pos embeddings.

∗ Set the “a” register (for the parse flag) to the one embeddings.

∗ Set the “z” register for the last column to the eop embedding.

– If ‘input embeddings‘ (from processing the prefix columns) have been passed
to ‘forward()‘, we set src embeddings to the concatenation of (src embeddings,
input embeddings).

• We process each layer of the transformer as follows:

– If the layer is the first layer of a repeat block, we capture the input value of all of
the registers in each column.

– We process the layer using the input to produce an output.

– If the layer is the last layer of a repeat block, we compare the register values
of the output to the register values of saved-off input, for each column. If any
register of any column has changed, we continue processing with the first layer of
the repeat block.

– If the registers have not changed, or if the current layer was not the last layer of
a repeat block, we continue processing with the next layer.

I.3 Layer-Level Operation

MHA is performed with the following changes:

• The softmax() and dropout() of the standardly-computed attention weights are
replaced by DATmax, i.e., the computation of α[N ] given in (76c-i).

• Values of input, query, key, value, MHA output, and attn weight tensors are captured
for later diagnostics and visualization (see screenshot in Sec. 7.2.3).

• The standard dropout() and LayerNorm() used to add the output of MHA to the
residual stream are replaced by DATnorm, as given in (76c-iii).

Appendix J. LLM testing details

This appendix includes the results of exploratory testing on the GPT-4 LLM Transformer,
using variants of the core task: 1 show rlw.

To test the effect of different number of constituents in the core task, we varied the
constituent count as shown in Table 6. Increasing the count had the most impact on
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performance of all the variants tested (ranging from .96 to .23 accuracy). This test shows
that even the best LLM starts to fail as the TGT task complexity increases.25

Task Split Con Count Con Length Prompts Accuracy

1 shot rlw test 1 1 100 0.96

1 shot rlw test 2 1 100 0.97

1 shot rlw ood cons count 3 3 1,2,4 100 0.62

1 shot rlw ood cons count 5 5 1,2,4 100 0.35

1 shot rlw ood cons count 7 7 1,2,4 100 0.26

1 shot rlw ood cons count 10 10 1,2,4 100 0.23

Table 6: Experiment results showing accuracy with varying numbers of constituents.

To test the effect of different number of symbols per constituent, we varied the constituent
length as shown in Table 7. Here we see a striking contrast with Table 6 — the model
performance drops only slowly as this aspect of the task complexity increases. Notice that
with the value 2 and 3, the model performed perfectly.

Task Split Con Count Con Length Prompts Accuracy

1 shot rlw test 1 1 100 0.96

1 shot rlw test 1 2 100 1.00

1 shot rlw ood cons len 3 1,2,4 3 100 1.00

1 shot rlw ood cons len 5 1,2,4 5 100 0.98

1 shot rlw ood cons len 7 1,2,4 7 100 0.96

1 shot rlw ood cons len 10 1,2,4 10 100 0.89

Table 7: Experiment results showing GPT-4 accuracy with varying constituent lengths.

For the next test, we wanted to see if model performance would increase with the number
of shots (input/output sample pairs) in each example. Table 8 shows the results. 4 shots
seems to be the optimal, with performance dropping on both sides of that number.

25. The ‘ood’ in the file names here refers to test items that are out of the training distribution for models
trained from scratch, discussed in App. K. These same test items are used here to test LLMs, where
we of course do not control the training distribution, so ‘ood’ should not be taken literally in this
context. However, it is true that except for the 1 shot eng split, all the test items use symbols that are
random-letter ‘words’ (rlw), and these symbols may never have been encountered during LM training.
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Task Split Runs Accuracy Notes

1 shot rlw test 100 0.7500 baseline core task

3 shot rlw test 100 0.8600

4 shot rlw test 100 0.9600 dynamically created from
5 shot rlw

5 shot rlw test 100 0.9500

7 shot rlw test 100 0.9300 dynamically created from
10 shot rlw

10 shot rlw test 100 0.9200

Table 8: Experiment results showing accuracy with varying number of shots.

The next test covers 4 variants that we thought might help the performance of the model
(Table 9). Using English words in place of the 2 letter random words improved performance
significantly, as did adding the grammar of the TGT dataset to the system prompt. Using
uppercase RLW words (vs. lowercase in core task) hurt performance significantly.

Task Split Runs Accuracy Notes

1 shot rlw test 100 0.7500 baseline core task

1 shot eng test 100 0.8800 uses English words vs. RLW

1 shot rlw test 100 0.8000 adding grammar to prompt

1 shot rlw ood lexical 100 0.5400 uses uppercase RLW words

Table 9: Experiment results showing the impact of varying task aspects on accuracy.

For our final set of tests, we want to test the ability of the model to generalize outside of
the N-shot distribution on the cue we trained it with. For this, we used the 5 shot rlw task.
The first row of Table 10 shows the baseline performance of the model using 5 shots. We
then tried the 3 out of distribution cues shown in the table. It can be seen that the model
performed significantly worse in these cases, but did not fail as typical non-LLM models
tend to do in OOD generalization.

Task Split Runs Accuracy Notes

5 shot rlw test 100 0.9500 baseline 5 shot task

5 shot rlw dyn ood lexical 100 0.8500 N-shots are lowercase rlw; cue is uppercase
RLW

5 shot eng dyn ood cons len 100 0.8400 N-shots are cons length=1,2,4; cue is cons
length=7

5 shot rlw dyn rev cons len 100 0.7100 N-shots are cons length=7; cue is cons
length=1,2,4

Table 10: Experiment results showing how differing cue/answer distributions affect accuracy
in N-shot tasks.
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Appendix K. Exploratory training from scratch and testing

This appendix includes the results for models trained from scratch on the TGT dataset and
then tested on various in and out of distribution splits.

The following sequence to sequence models were tested: vanilla transformer (encoder/de-
coder), nano gpt (decoder only), nano gpt attn only (no MLP layers), cnn, lstm attn (LSTM
with attention), and mamba.

Here are the architecture hyperparameters:

Model hidden filter layers heads state size bidir

transformer 512 512 3 + 3 1

nano gpt 512 512 6 1

nano gpt attn only 512 512 6 1

cnn 512 512 3 + 3

lstm attn 512 3 + 3 false

mamba 512 512 18 16

Table 11: Architecture hyperparameters.

Here are the training hyperparameters:

Model LR weight decay steps early stop batch size dropout

transformer .0001 0 120,000 false 128 0

nano gpt .0001 0 120,000 false 256 0

nano gpt attn only .0001 0 120,000 false 256 0

cnn .0001 0 120,000 false 128 0

lstm attn .0001 0 120,000 false 128 0

mamba .0001 0 120,000 false 256 0

Table 12: Training hyperparameters

The following splits were tested: train, dev, ood lexical (out of distribution for con-
stituent part vocabulary), ood cons len 7 (constituent lengths of 7), and ood cons count 7 (7
constituents).

All reported metrics were averaged over 3 runs.

K.0.1 Training curves

Here are the training curves for each model that we trained.
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Transformer

Nano GPT
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CNN

LSTM with attention
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Mamba

K.0.2 Results by model

Here are the training results, plotted by model.
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Transformer

Nano GPT
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Nano GPT with no MLP layers

CNN
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LSTM with attention

Mamba

96



Mechanisms of Symbol Processing in Transformers

References

Akyurek, E., Schuurmans, D., Andreas, J., Ma, T., & Zhou, D. (2022). What learning
algorithm is in-context learning? investigations with linear models. arXiv:2211.15661.

Akyurek, E., Wang, B., Kim, Y., & Andreas, J. (2024). In-context language learning:
Architectures and algorithms. arXiv:2401.12973.

Anderson, J. R. (2005). Human symbol manipulation within an integrated cognitive
architecture. Cognitive Science, 29, 313–341.
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