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TL;DR
- We show that LLMs display the inverse frequency effect in structural priming
in the ICL setting, mirroring human language processing;

= Previous studies have argued that the inverse frequency effect implicates
error-driven learning;

 We conclude that ICL in off-the-shelf LLMs can be viewed as a form of
error-driven learning.
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Methodology and Experiment Overview

Reasoning Behind the Current Experiments

Psycholinguistic Theories: only some kinds of

[Assumption]

gradient-based, error-driven learning mechanism

could give rise to the IFE.

[Connecting Priming to ICL]
Having a prime sentence as the prompt in the
context window conditions the probability
distribution over the target sentence via ICL.

[Core Hypothesis]
If ICL involves a gradient component when
processing the context, then LLMs with
strong ICL capabilities should show the IFE.

[Additional Hypothesis]
Because larger models have
stronger ICL capabilities,
they should display a more

[Previous Works on LLMs' sizes and ICL] significant IFE.
In-context Learning ~(functionally) Gradient Descent? . Iprevious Works on Priming in LLMS] The ICL capability scales with LLMs'size.
s do show human-like behaviors for standard
structural priming.
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Prime in DO Structure Target in PD Structure = Models of all sizes show standard structural priming; larger models show more significant IFE.
Input: A doctor brought a chief a plate. The secretary drew the card for the band. = Thus, models with stronger ICL capability correspondingly show greater IFE — having greater

capability of capturing the implicit gradient relevant to the verb bias without weight updates.

Prime Verb Verb PD Bias Primed log probability
Bring 0.23 "47-5 Implications & Future Directions
Buy 0.27 -47.8
Find 0.41 -48.3
Draw 0.52 -49.0 « We corroborate the hypothesis “ICL ~(functionally) GD” in the case of structural
Design 0.77 ~49-9 priming with off-the-shelf LLMs and natural language data.
When priming in DO structure larger PD biases » a greater priming effect

» Future: to apply the IFE diagnostic on other ICL tasks, and to find mechanistic
level explanations and evidence for the existence of the implicit gradient.

Github: https://github.com/herbert-zhou/ICL_IFE AMLaP 2024 @ Edinburgh, Conference Poster

{herbert.zhou, robert.frank, tom.mccoyl@yale.edu



https://github.com/xiaomeng-zhu/LIEDER

